TCM herbal prescription recommendation model based on multi-graph convolutional network

药方 计算机科学 人工智能 医学 图形 中医药 传统医学 数据挖掘 替代医学 理论计算机科学 药理学 病理
作者
Wen Zhao,Weikai Lu,Zuoyong Li,Changèn Zhou,Haoyi Fan,Zhaoyang Yang,Xuejuan Lin,Candong Li
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:297: 115109-115109 被引量:35
标识
DOI:10.1016/j.jep.2022.115109
摘要

The recommendation of herbal prescriptions is a focus of research in traditional Chinese medicine (TCM). Artificial intelligence (AI) algorithms can generate prescriptions by analysing symptom data. Current models mainly focus on the binary relationships between a group of symptoms and a group of TCM herbs. A smaller number of existing models focus on the ternary relationships between TCM symptoms, syndrome-types and herbs. However, the process of TCM diagnosis (symptom analysis) and treatment (prescription) is, in essence, a "multi-ary" (n-ary) relationship. Present models fall short of considering the n-ary relationships between symptoms, state-elements, syndrome-types and herbs. Therefore, there is room for improvement in TCM herbal prescription recommendation models.To portray the n-ary relationship, this study proposes a prescription recommendation model based on a multigraph convolutional network (MGCN). It introduces two essential components of the TCM diagnosis process: state-elements and syndrome-types.The MGCN consists of two modules: a TCM feature-aggregation module and a herbal medicine prediction module. The TCM feature-aggregation module simulates the n-ary relationships between symptoms and prescriptions by constructing a symptom-'state element'-symptom graph (Se) and a symptom-'syndrome-type'-symptom graph (Ts). The herbal medicine prediction module inputs state-elements, syndrome-types and symptom data and uses a multilayer perceptron (MLP) to predict a corresponding herbal prescription. To verify the effectiveness of the proposed model, numerous quantitative and qualitative experiments were conducted on the Treatise on Febrile Diseases dataset.In the experiments, the MGCN outperformed three other algorithms used for comparison. In addition, the experimental data shows that, of these three algorithms, the SVM performed best. The MGCN was 4.51%, 6.45% and 5.31% higher in Precision@5, Recall@5 and F1-score@5, respectively, than the SVM. We set the K-value to 5 and conducted two qualitative experiments. In the first case, all five herbs in the label were correctly predicted by the MGCN. In the second case, four of the five herbs were correctly predicted.Compared with existing AI algorithms, the MGCN significantly improved the accuracy of TCM herbal prescription recommendations. In addition, the MGCN provides a more accurate TCM prescription herbal recommendation scheme, giving it great practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助痴情的凌雪采纳,获得10
刚刚
我是老大应助哈哈哈采纳,获得10
1秒前
FashionBoy应助cs采纳,获得10
1秒前
四季豆完成签到,获得积分20
1秒前
2秒前
2秒前
loong发布了新的文献求助10
3秒前
Star发布了新的文献求助10
3秒前
4秒前
李雪晴完成签到,获得积分10
4秒前
科目三应助Crisp采纳,获得10
4秒前
Singularity应助卓卓采纳,获得10
4秒前
四季豆发布了新的文献求助10
6秒前
小燕子完成签到 ,获得积分10
7秒前
新星完成签到 ,获得积分10
8秒前
LizQAQ发布了新的文献求助30
8秒前
9秒前
幸福娃娃完成签到,获得积分20
9秒前
大个应助许起眸采纳,获得10
10秒前
狂野世立发布了新的文献求助10
10秒前
Henry应助sssssnape采纳,获得200
10秒前
WXH完成签到 ,获得积分10
11秒前
11秒前
12秒前
心睡完成签到,获得积分10
12秒前
ding应助嘎嘎采纳,获得10
12秒前
wph发布了新的文献求助10
15秒前
木木彡发布了新的文献求助20
15秒前
醒略略发布了新的文献求助10
16秒前
16秒前
宫然完成签到,获得积分10
17秒前
17秒前
17秒前
酷波er应助loong采纳,获得10
18秒前
20秒前
cs发布了新的文献求助10
20秒前
TiYork发布了新的文献求助10
23秒前
球球关注了科研通微信公众号
24秒前
研友_LpAbjn应助automan采纳,获得50
24秒前
星辰大海应助小白采纳,获得10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260