TCM herbal prescription recommendation model based on multi-graph convolutional network

药方 计算机科学 人工智能 医学 图形 中医药 传统医学 数据挖掘 替代医学 理论计算机科学 药理学 病理
作者
Wen Zhao,Weikai Lu,Zuoyong Li,Changèn Zhou,Haoyi Fan,Zhaoyang Yang,Xuejuan Lin,Candong Li
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:297: 115109-115109 被引量:57
标识
DOI:10.1016/j.jep.2022.115109
摘要

The recommendation of herbal prescriptions is a focus of research in traditional Chinese medicine (TCM). Artificial intelligence (AI) algorithms can generate prescriptions by analysing symptom data. Current models mainly focus on the binary relationships between a group of symptoms and a group of TCM herbs. A smaller number of existing models focus on the ternary relationships between TCM symptoms, syndrome-types and herbs. However, the process of TCM diagnosis (symptom analysis) and treatment (prescription) is, in essence, a "multi-ary" (n-ary) relationship. Present models fall short of considering the n-ary relationships between symptoms, state-elements, syndrome-types and herbs. Therefore, there is room for improvement in TCM herbal prescription recommendation models.To portray the n-ary relationship, this study proposes a prescription recommendation model based on a multigraph convolutional network (MGCN). It introduces two essential components of the TCM diagnosis process: state-elements and syndrome-types.The MGCN consists of two modules: a TCM feature-aggregation module and a herbal medicine prediction module. The TCM feature-aggregation module simulates the n-ary relationships between symptoms and prescriptions by constructing a symptom-'state element'-symptom graph (Se) and a symptom-'syndrome-type'-symptom graph (Ts). The herbal medicine prediction module inputs state-elements, syndrome-types and symptom data and uses a multilayer perceptron (MLP) to predict a corresponding herbal prescription. To verify the effectiveness of the proposed model, numerous quantitative and qualitative experiments were conducted on the Treatise on Febrile Diseases dataset.In the experiments, the MGCN outperformed three other algorithms used for comparison. In addition, the experimental data shows that, of these three algorithms, the SVM performed best. The MGCN was 4.51%, 6.45% and 5.31% higher in Precision@5, Recall@5 and F1-score@5, respectively, than the SVM. We set the K-value to 5 and conducted two qualitative experiments. In the first case, all five herbs in the label were correctly predicted by the MGCN. In the second case, four of the five herbs were correctly predicted.Compared with existing AI algorithms, the MGCN significantly improved the accuracy of TCM herbal prescription recommendations. In addition, the MGCN provides a more accurate TCM prescription herbal recommendation scheme, giving it great practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
Eon完成签到 ,获得积分10
3秒前
3秒前
4秒前
默默无闻完成签到,获得积分0
5秒前
6秒前
小单王完成签到,获得积分10
6秒前
Yurrrrt完成签到,获得积分10
6秒前
CMD完成签到 ,获得积分10
8秒前
psybrain9527完成签到,获得积分10
10秒前
111完成签到,获得积分10
12秒前
Devil完成签到 ,获得积分10
13秒前
16秒前
16秒前
17秒前
17秒前
22秒前
大得德发布了新的文献求助10
22秒前
callmecjh完成签到,获得积分10
22秒前
问题多多完成签到 ,获得积分10
22秒前
无语的从云完成签到,获得积分10
24秒前
ssk完成签到,获得积分10
26秒前
27秒前
27秒前
nature完成签到,获得积分10
28秒前
31秒前
小米椒完成签到 ,获得积分10
31秒前
32秒前
浮游应助shuicaoxi采纳,获得10
33秒前
浮游应助shuicaoxi采纳,获得10
33秒前
糖丸完成签到,获得积分10
34秒前
OSASACB完成签到 ,获得积分10
34秒前
霸气的代天完成签到,获得积分10
35秒前
35秒前
平常的半莲完成签到 ,获得积分10
35秒前
朱飞飞发布了新的文献求助10
36秒前
lalala完成签到,获得积分10
37秒前
着急的罡完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304495
求助须知:如何正确求助?哪些是违规求助? 4450995
关于积分的说明 13850260
捐赠科研通 4338051
什么是DOI,文献DOI怎么找? 2381778
邀请新用户注册赠送积分活动 1376865
关于科研通互助平台的介绍 1344153