TCM herbal prescription recommendation model based on multi-graph convolutional network

药方 计算机科学 人工智能 医学 图形 中医药 传统医学 数据挖掘 替代医学 理论计算机科学 药理学 病理
作者
Wen Zhao,Weikai Lu,Zuoyong Li,Changèn Zhou,Haoyi Fan,Zhaoyang Yang,Xuejuan Lin,Candong Li
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:297: 115109-115109 被引量:54
标识
DOI:10.1016/j.jep.2022.115109
摘要

The recommendation of herbal prescriptions is a focus of research in traditional Chinese medicine (TCM). Artificial intelligence (AI) algorithms can generate prescriptions by analysing symptom data. Current models mainly focus on the binary relationships between a group of symptoms and a group of TCM herbs. A smaller number of existing models focus on the ternary relationships between TCM symptoms, syndrome-types and herbs. However, the process of TCM diagnosis (symptom analysis) and treatment (prescription) is, in essence, a "multi-ary" (n-ary) relationship. Present models fall short of considering the n-ary relationships between symptoms, state-elements, syndrome-types and herbs. Therefore, there is room for improvement in TCM herbal prescription recommendation models.To portray the n-ary relationship, this study proposes a prescription recommendation model based on a multigraph convolutional network (MGCN). It introduces two essential components of the TCM diagnosis process: state-elements and syndrome-types.The MGCN consists of two modules: a TCM feature-aggregation module and a herbal medicine prediction module. The TCM feature-aggregation module simulates the n-ary relationships between symptoms and prescriptions by constructing a symptom-'state element'-symptom graph (Se) and a symptom-'syndrome-type'-symptom graph (Ts). The herbal medicine prediction module inputs state-elements, syndrome-types and symptom data and uses a multilayer perceptron (MLP) to predict a corresponding herbal prescription. To verify the effectiveness of the proposed model, numerous quantitative and qualitative experiments were conducted on the Treatise on Febrile Diseases dataset.In the experiments, the MGCN outperformed three other algorithms used for comparison. In addition, the experimental data shows that, of these three algorithms, the SVM performed best. The MGCN was 4.51%, 6.45% and 5.31% higher in Precision@5, Recall@5 and F1-score@5, respectively, than the SVM. We set the K-value to 5 and conducted two qualitative experiments. In the first case, all five herbs in the label were correctly predicted by the MGCN. In the second case, four of the five herbs were correctly predicted.Compared with existing AI algorithms, the MGCN significantly improved the accuracy of TCM herbal prescription recommendations. In addition, the MGCN provides a more accurate TCM prescription herbal recommendation scheme, giving it great practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薄雪草完成签到,获得积分10
3秒前
大橙子发布了新的文献求助10
3秒前
快乐学习每一天完成签到 ,获得积分10
3秒前
薄荷味完成签到 ,获得积分0
5秒前
科研通AI2S应助笑林采纳,获得10
5秒前
无心的雅旋完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Horizon完成签到 ,获得积分10
11秒前
Oliver完成签到 ,获得积分10
13秒前
Superman完成签到 ,获得积分10
16秒前
Tina酱完成签到 ,获得积分10
16秒前
琪琪完成签到,获得积分10
16秒前
双碳小王子完成签到,获得积分10
18秒前
smottom应助科研通管家采纳,获得10
20秒前
20秒前
明时完成签到,获得积分10
21秒前
杨瑞东完成签到 ,获得积分10
24秒前
yyyy完成签到,获得积分10
32秒前
缥缈的平卉完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
44秒前
李爱国应助大橙子采纳,获得10
45秒前
magictoo发布了新的文献求助30
51秒前
53秒前
yang完成签到,获得积分10
53秒前
Minicoper发布了新的文献求助10
54秒前
快乐丸子完成签到,获得积分10
55秒前
简单而复杂完成签到,获得积分10
55秒前
大橙子发布了新的文献求助10
59秒前
张牧之完成签到 ,获得积分10
1分钟前
冷冷暴力完成签到,获得积分10
1分钟前
YYY完成签到,获得积分10
1分钟前
1分钟前
gujian完成签到 ,获得积分10
1分钟前
帅气的秘密完成签到 ,获得积分10
1分钟前
自然函发布了新的文献求助10
1分钟前
冰冰双双完成签到,获得积分10
1分钟前
开心夏旋完成签到 ,获得积分0
1分钟前
我要读博士完成签到 ,获得积分10
1分钟前
活泼的大船完成签到,获得积分10
1分钟前
AFF完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022