TCM herbal prescription recommendation model based on multi-graph convolutional network

药方 计算机科学 人工智能 医学 图形 中医药 传统医学 数据挖掘 替代医学 理论计算机科学 药理学 病理
作者
Wen Zhao,Weikai Lu,Zuoyong Li,Changèn Zhou,Haoyi Fan,Zhaoyang Yang,Xuejuan Lin,Candong Li
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:297: 115109-115109 被引量:54
标识
DOI:10.1016/j.jep.2022.115109
摘要

The recommendation of herbal prescriptions is a focus of research in traditional Chinese medicine (TCM). Artificial intelligence (AI) algorithms can generate prescriptions by analysing symptom data. Current models mainly focus on the binary relationships between a group of symptoms and a group of TCM herbs. A smaller number of existing models focus on the ternary relationships between TCM symptoms, syndrome-types and herbs. However, the process of TCM diagnosis (symptom analysis) and treatment (prescription) is, in essence, a "multi-ary" (n-ary) relationship. Present models fall short of considering the n-ary relationships between symptoms, state-elements, syndrome-types and herbs. Therefore, there is room for improvement in TCM herbal prescription recommendation models.To portray the n-ary relationship, this study proposes a prescription recommendation model based on a multigraph convolutional network (MGCN). It introduces two essential components of the TCM diagnosis process: state-elements and syndrome-types.The MGCN consists of two modules: a TCM feature-aggregation module and a herbal medicine prediction module. The TCM feature-aggregation module simulates the n-ary relationships between symptoms and prescriptions by constructing a symptom-'state element'-symptom graph (Se) and a symptom-'syndrome-type'-symptom graph (Ts). The herbal medicine prediction module inputs state-elements, syndrome-types and symptom data and uses a multilayer perceptron (MLP) to predict a corresponding herbal prescription. To verify the effectiveness of the proposed model, numerous quantitative and qualitative experiments were conducted on the Treatise on Febrile Diseases dataset.In the experiments, the MGCN outperformed three other algorithms used for comparison. In addition, the experimental data shows that, of these three algorithms, the SVM performed best. The MGCN was 4.51%, 6.45% and 5.31% higher in Precision@5, Recall@5 and F1-score@5, respectively, than the SVM. We set the K-value to 5 and conducted two qualitative experiments. In the first case, all five herbs in the label were correctly predicted by the MGCN. In the second case, four of the five herbs were correctly predicted.Compared with existing AI algorithms, the MGCN significantly improved the accuracy of TCM herbal prescription recommendations. In addition, the MGCN provides a more accurate TCM prescription herbal recommendation scheme, giving it great practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaaa完成签到,获得积分10
1秒前
小墨墨完成签到 ,获得积分10
2秒前
英姑应助静默向上采纳,获得10
5秒前
清秀LL完成签到 ,获得积分10
6秒前
6秒前
8秒前
qiu完成签到 ,获得积分10
9秒前
hahaha完成签到,获得积分10
13秒前
13秒前
踏水追风完成签到,获得积分10
14秒前
蓝精灵de你完成签到,获得积分10
15秒前
16秒前
17秒前
濮阳盼曼完成签到,获得积分10
17秒前
Emon发布了新的文献求助10
20秒前
小刺猬完成签到,获得积分10
21秒前
22秒前
long发布了新的文献求助10
22秒前
23秒前
24秒前
兔子不爱吃胡萝卜完成签到,获得积分10
25秒前
Emon完成签到,获得积分10
27秒前
bingo完成签到,获得积分10
28秒前
宁霸完成签到,获得积分0
28秒前
SilverPlane完成签到,获得积分10
28秒前
烟雨发布了新的文献求助10
28秒前
vivi发布了新的文献求助10
29秒前
RDQ完成签到,获得积分10
29秒前
专玩对抗路完成签到,获得积分10
30秒前
drslytherin完成签到,获得积分10
31秒前
KX2024完成签到,获得积分10
31秒前
wsqg123完成签到,获得积分10
32秒前
夜信完成签到,获得积分10
32秒前
学海行舟完成签到 ,获得积分10
33秒前
依人如梦完成签到 ,获得积分10
34秒前
烟雨完成签到,获得积分10
35秒前
long完成签到,获得积分10
35秒前
大气建辉完成签到 ,获得积分10
37秒前
yar完成签到 ,获得积分10
38秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513400
关于积分的说明 11167585
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875131
科研通“疑难数据库(出版商)”最低求助积分说明 804664