TCM herbal prescription recommendation model based on multi-graph convolutional network

药方 计算机科学 人工智能 医学 图形 中医药 传统医学 数据挖掘 替代医学 理论计算机科学 药理学 病理
作者
Wen Zhao,Weikai Lu,Zuoyong Li,Changèn Zhou,Haoyi Fan,Zhaoyang Yang,Xuejuan Lin,Candong Li
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:297: 115109-115109 被引量:54
标识
DOI:10.1016/j.jep.2022.115109
摘要

The recommendation of herbal prescriptions is a focus of research in traditional Chinese medicine (TCM). Artificial intelligence (AI) algorithms can generate prescriptions by analysing symptom data. Current models mainly focus on the binary relationships between a group of symptoms and a group of TCM herbs. A smaller number of existing models focus on the ternary relationships between TCM symptoms, syndrome-types and herbs. However, the process of TCM diagnosis (symptom analysis) and treatment (prescription) is, in essence, a "multi-ary" (n-ary) relationship. Present models fall short of considering the n-ary relationships between symptoms, state-elements, syndrome-types and herbs. Therefore, there is room for improvement in TCM herbal prescription recommendation models.To portray the n-ary relationship, this study proposes a prescription recommendation model based on a multigraph convolutional network (MGCN). It introduces two essential components of the TCM diagnosis process: state-elements and syndrome-types.The MGCN consists of two modules: a TCM feature-aggregation module and a herbal medicine prediction module. The TCM feature-aggregation module simulates the n-ary relationships between symptoms and prescriptions by constructing a symptom-'state element'-symptom graph (Se) and a symptom-'syndrome-type'-symptom graph (Ts). The herbal medicine prediction module inputs state-elements, syndrome-types and symptom data and uses a multilayer perceptron (MLP) to predict a corresponding herbal prescription. To verify the effectiveness of the proposed model, numerous quantitative and qualitative experiments were conducted on the Treatise on Febrile Diseases dataset.In the experiments, the MGCN outperformed three other algorithms used for comparison. In addition, the experimental data shows that, of these three algorithms, the SVM performed best. The MGCN was 4.51%, 6.45% and 5.31% higher in Precision@5, Recall@5 and F1-score@5, respectively, than the SVM. We set the K-value to 5 and conducted two qualitative experiments. In the first case, all five herbs in the label were correctly predicted by the MGCN. In the second case, four of the five herbs were correctly predicted.Compared with existing AI algorithms, the MGCN significantly improved the accuracy of TCM herbal prescription recommendations. In addition, the MGCN provides a more accurate TCM prescription herbal recommendation scheme, giving it great practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WD发布了新的文献求助10
1秒前
3秒前
蓝橙发布了新的文献求助10
4秒前
4秒前
4秒前
耶耶耶完成签到,获得积分10
5秒前
单薄不悔完成签到,获得积分10
5秒前
搜集达人应助魏少爷采纳,获得10
7秒前
富贵儿完成签到 ,获得积分10
9秒前
9秒前
10秒前
哇哈哈完成签到,获得积分10
10秒前
frap完成签到,获得积分0
10秒前
予安发布了新的文献求助10
10秒前
脑洞疼应助伍子丐的猫采纳,获得10
12秒前
13秒前
孙成成发布了新的文献求助10
13秒前
13秒前
AlexChen发布了新的文献求助30
14秒前
NexusExplorer应助谨言采纳,获得10
17秒前
自由从筠完成签到,获得积分10
17秒前
小叶子发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
自由从筠发布了新的文献求助10
20秒前
21秒前
yufanhui应助从容的鲜花采纳,获得10
21秒前
predict1964关注了科研通微信公众号
23秒前
24秒前
ding应助予安采纳,获得10
26秒前
隐形曼青应助自信若魔采纳,获得10
27秒前
27秒前
澡雪发布了新的文献求助10
28秒前
29秒前
29秒前
充电宝应助KD_SWMU采纳,获得10
30秒前
大辉发布了新的文献求助10
32秒前
小李子完成签到 ,获得积分10
32秒前
Ashao完成签到,获得积分10
32秒前
咔什么嚓发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357