Machine learning analysis of alloying element effects on hydrogen storage properties of AB2 metal hydrides

氢气储存 Laves相 氢化物 材料科学 合金 钛合金 金属 热力学 冶金 金属间化合物 化学 物理 有机化学
作者
Suwarno Suwarno,Ghazy Dicky,Abdillah Suyuthi,Mohammad Khoirul Effendi,Witantyo Witantyo,Lukman Noerochim,M. Ismail
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:47 (23): 11938-11947 被引量:21
标识
DOI:10.1016/j.ijhydene.2022.01.210
摘要

Zirconium-titanium-based AB2 is a potential candidate for hydrogen storage alloys and NiMH battery electrodes. Machine learning (ML) has been used to discover and optimize the properties of energy-related materials, including hydrogen storage alloys. This study used ML approaches to analyze the AB2 metal hydrides dataset. The AB2 alloy is considered promising owing to its slightly high hydrogen density and commerciality. This study investigates the effect of the alloying elements on the hydrogen storage properties of the AB2 alloys, i.e., the heat of formation (ΔH), phase abundance, and hydrogen capacity. ML analysis was performed on the 314 pairs collected and data curated from the literature published during 1998–2019, comprising the chemical compositions of alloys and their hydrogen storage properties. The random forest model excellently predicts all hydrogen storage properties for the dataset. Ni provided the most contribution to the change in the enthalpy of the hydride formation but reduced the hydrogen content. Other elements, such as Cr, contribute strongly to the formation of the C14-type Laves phase. Mn significantly affects the hydrogen storage capacity. This study is expected to guide further experimental work to optimize the phase structure of AB2 and its hydrogen sorption properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助有魅力的电脑采纳,获得10
刚刚
Tomoyo发布了新的文献求助10
刚刚
poting应助wzyyyyy采纳,获得10
1秒前
1秒前
3秒前
希望天下0贩的0应助cure采纳,获得10
4秒前
5秒前
科研狗发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
共享精神应助顺心无极采纳,获得10
7秒前
9秒前
Sun完成签到,获得积分10
11秒前
11秒前
11秒前
太叔若南完成签到 ,获得积分10
12秒前
12秒前
晴天发布了新的文献求助10
12秒前
12秒前
皮皮领发布了新的文献求助10
13秒前
开放幻丝完成签到 ,获得积分10
13秒前
14秒前
lily关注了科研通微信公众号
14秒前
Mon完成签到 ,获得积分10
15秒前
15秒前
茉莉香片完成签到,获得积分10
17秒前
Jasper应助欣慰的寄灵采纳,获得10
18秒前
18秒前
星辰大海应助丢丢采纳,获得10
19秒前
空古悠浪发布了新的文献求助10
19秒前
李健的小迷弟应助李浩采纳,获得10
19秒前
打打应助Tomoyo采纳,获得10
21秒前
22秒前
23秒前
隐形曼青应助祎橘采纳,获得10
25秒前
mhpvv完成签到,获得积分10
25秒前
一一应助包容溪灵采纳,获得10
25秒前
Hello应助一小部分我采纳,获得10
25秒前
SUS发布了新的文献求助200
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455082
求助须知:如何正确求助?哪些是违规求助? 3050350
关于积分的说明 9021081
捐赠科研通 2738991
什么是DOI,文献DOI怎么找? 1502390
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693216