Rapid dehydrogenation of metallic materials under external electric field

材料科学 脱氢 氢气储存 电场 扩散 氢原子 吸附低温 化学物理 氢脆 复合材料 热力学 化学 合金 有机化学 催化作用 腐蚀 物理 量子力学 烷基
作者
Rui Ma,Siqi Xiang,Xinfang Zhang,Jianchun Wu
出处
期刊:Materials today communications [Elsevier]
卷期号:31: 103350-103350 被引量:2
标识
DOI:10.1016/j.mtcomm.2022.103350
摘要

The interaction between hydrogen and metal materials can lead to catastrophic failure of metallic materials, and while some metal materials can use this effect as hydrogen storage materials to make better use of hydrogen energy. If dehydrogenation is easier, it will help control hydrogen-induced degradation and the utilization of metallic hydrogen storage materials. In this study, molecular dynamics simulations are used to apply an electric field in the bicrystal hydrogen-iron system to study the diffusion coefficient of hydrogen atoms. Simultaneously, using hydrogen-charged high-strength as a model system, the effect of electric field on hydrogen content and mechanical properties of hydrogen-charged high-strength steel was also studied. Experimental and molecular simulation results show that, compared with traditional tempering, the diffusion rate of hydrogen atoms is faster and the diffusion activation energy is smaller under the action of an electric field, which is more conducive to the recovery of the mechanical properties of hydrogen-charged high-strength steel. Due to the introduction of an electric field to cause additional electrical energy, the energy barrier for hydrogen atom diffusion is lowered. At the same time, due to the influence of electromigration, the diffusion of hydrogen atoms is driven by an electron wind force, which eventually leads to an acceleration of the dehydrogenation rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ann完成签到,获得积分10
刚刚
今今发布了新的文献求助10
1秒前
123123完成签到 ,获得积分10
1秒前
SciGPT应助伊酒采纳,获得10
2秒前
何糖发布了新的文献求助10
3秒前
ding应助SEV采纳,获得10
3秒前
田様应助csq采纳,获得10
3秒前
dafwfwaf发布了新的文献求助10
3秒前
3秒前
景别完成签到,获得积分10
4秒前
彭于晏应助zhappy采纳,获得20
4秒前
5秒前
xg发布了新的文献求助10
5秒前
6秒前
Tophet完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
FashionBoy应助落落采纳,获得10
8秒前
活力的青枫完成签到 ,获得积分10
8秒前
苏素肃发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
空禅yew发布了新的文献求助10
10秒前
汉堡包应助花开的声音1217采纳,获得10
10秒前
ying发布了新的文献求助10
10秒前
animenz完成签到,获得积分10
11秒前
tY发布了新的文献求助10
12秒前
OJL发布了新的文献求助10
12秒前
12秒前
12秒前
柒柒完成签到,获得积分10
12秒前
丘比特应助111采纳,获得10
13秒前
14秒前
14秒前
XShu完成签到,获得积分20
14秒前
xx完成签到 ,获得积分10
15秒前
羊知鱼完成签到,获得积分10
16秒前
公茂源发布了新的文献求助30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808