Building Resilience Through Foresight: The Case of Maritime Container Shipping Firms

未来研究 容器(类型理论) 弹性(材料科学) 业务 产业组织 计算机科学 工程类 机械工程 物理 人工智能 热力学
作者
Henrik Bathke,Christopher Münch,Heiko A. von der Gracht,Evi Hartmann
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:71: 10534-10556 被引量:21
标识
DOI:10.1109/tem.2021.3137009
摘要

Maritime container shipping (MCS) firms represent the backbone of worldwide supply chains. Due to the emergence of global trends and disruptions, MCS firms increasingly face an uncertain environment. Consequently, MCS firms must develop dynamic capabilities to enable the reconfiguration of organizational resources for building resilience in a constantly changing business ecosystem. To create adequate dynamic capabilities, MCS firms need to anticipate the future of their macro environment through advanced foresight techniques. Using a Delphi-based scenario analysis, this study systematically examines scenarios for MCS firms' macro environment. Twelve projections for the MCS industry were systematically created and were then assessed by 51 maritime experts. The resulting three distinct scenarios deliver valuable insights for MCS firms' executives, whereas the blockchains and drones technology will have already increased efficiency in the short-term scenario "picking the low-hanging fruit," other technological disruptions will only affect the industry in the medium-term scenario "experiencing an era of dichotomy." In the long-term scenario "overcoming the obstacles of the generational shift," MCS firms will experience a transfer toward alternative fuel powered and autonomously driven vessels. Offering detailed scenarios for the future MCS macro environment, this study represents a guide for decision-makers on how to create dynamic capabilities in MCS firms to build resilience. Moreover, the results revealed differences in the experts' assessments due to their characteristics. Therefore, the study contributes to the academic focus on in-depth diversity analysis in the Delphi methodology and emphasizes the relevance of incorporating multiple stakeholders and panelists in future planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助小小怪将军采纳,获得10
刚刚
nater3ver完成签到,获得积分10
1秒前
1秒前
慕青应助史蒂芬·周采纳,获得10
2秒前
Can发布了新的文献求助10
4秒前
科研通AI5应助友好曲奇采纳,获得10
4秒前
boshi发布了新的文献求助10
4秒前
章铭-111完成签到,获得积分10
4秒前
姜夔发布了新的文献求助10
5秒前
5秒前
eternity136应助Rrr采纳,获得20
6秒前
7秒前
zhouyi发布了新的文献求助10
8秒前
adi完成签到,获得积分10
8秒前
9秒前
苏苏发布了新的文献求助10
9秒前
10秒前
YZH123发布了新的文献求助10
10秒前
123完成签到 ,获得积分10
12秒前
汉堡包应助boshi采纳,获得10
14秒前
max2022发布了新的文献求助10
15秒前
SS1025861完成签到 ,获得积分20
15秒前
退给他完成签到,获得积分20
15秒前
小蘑菇应助wen123采纳,获得10
16秒前
17秒前
21秒前
2ilo_发布了新的文献求助10
22秒前
22秒前
chris完成签到,获得积分10
23秒前
24秒前
nater2ver完成签到,获得积分10
24秒前
咕噜咕噜关注了科研通微信公众号
24秒前
zhai发布了新的文献求助10
25秒前
26秒前
statsli完成签到,获得积分10
26秒前
27秒前
shuangcheng发布了新的文献求助10
27秒前
27秒前
科目三应助czephyr采纳,获得10
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559794
求助须知:如何正确求助?哪些是违规求助? 3134246
关于积分的说明 9406240
捐赠科研通 2834289
什么是DOI,文献DOI怎么找? 1558019
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522