计算机科学
发电机(电路理论)
插值(计算机图形学)
建筑
生成语法
变化(天文学)
身份(音乐)
人工智能
钥匙(锁)
质量(理念)
对抗制
机器学习
功率(物理)
图像(数学)
物理
认识论
量子力学
哲学
艺术
视觉艺术
天体物理学
计算机安全
声学
作者
Tero Karras,Samuli Laine,Timo Aila
标识
DOI:10.1109/tpami.2020.2970919
摘要
We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.
科研通智能强力驱动
Strongly Powered by AbleSci AI