Muscle Atrophy Evaluation via Radiomics Analysis Using Ultrasound Images: A Cohort Data Study

萎缩 肌肉萎缩 超声波 分级(工程) 特征选择 腓肠肌 步态分析 模式识别(心理学) 计算机科学 生物医学工程 医学 人工智能 骨骼肌 步态 解剖 病理 物理医学与康复 放射科 生物 生态学
作者
Yue Zhang,Getao Du,Yonghua Zhan,Kaitai Guo,Yang Zheng,Liang Tang,Jianzhong Guo,Jimin Liang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 3163-3174 被引量:10
标识
DOI:10.1109/tbme.2022.3162223
摘要

Existing methods for muscle atrophy evaluation based on muscle size measures from ultrasound images are inadequate in precision. Radiomics has been widely used in various medical studies, but its validity for the evaluation of muscle atrophy has not been fully explored.This study presents a radiomics analysis for muscle atrophy evaluation using ultrasound images. The hindlimb unloading rat model was developed to simulate weightlessness muscle atrophy and ultrasound images of the hind limbs were acquired for both the hindlimb unloaded (HU) and control groups during a 21-day HU period. A total of 368 radiomics features were extracted and the stable and informative features were selected through a two-stage feature selection procedure. The feature change trajectory of the stable features was analyzed using the hierarchical clustering method. Finally, an adaptive longitudinal feature selection and grading network, ALNet, was developed to evaluate muscle atrophy.The clustering trajectories of ultrasound image features showed similar trends to the changes in muscle atrophy at the molecular level. The best grading accuracy achieved by the ALNet was 79.5% for the Soleus (Sol) muscle and 82.6% for the Gastrocnemius (Gas) muscle.The test-retest is essential in performing radiomics analysis on ultrasound images. The longitudinal feature selection is important for muscle atrophy grading. The ultrasound image features of the Gas muscle have better discrimination ability than that of the Sol muscle. This study proves for the first time the capability of ultrasound image features for muscle atrophy evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大力发布了新的文献求助10
刚刚
Fei完成签到,获得积分10
1秒前
VICKY发布了新的文献求助10
1秒前
繁荣的寄松完成签到,获得积分10
1秒前
满意草丛发布了新的文献求助10
1秒前
火星上书雁完成签到,获得积分10
2秒前
英俊的铭应助蛋黄的阿爸采纳,获得10
2秒前
浮游应助shell采纳,获得10
2秒前
sweet完成签到,获得积分10
3秒前
medlive2020发布了新的文献求助10
4秒前
小二郎应助灯火阑珊曦采纳,获得10
4秒前
星辰大海应助枫叶采纳,获得30
5秒前
科目三应助lulu采纳,获得10
5秒前
5秒前
shmily完成签到,获得积分10
5秒前
听音乐的可可完成签到 ,获得积分10
5秒前
周帆发布了新的文献求助10
6秒前
6秒前
lishuxin发布了新的文献求助10
6秒前
Zzz完成签到,获得积分10
7秒前
amanda应助FAYE采纳,获得20
7秒前
hihihihi完成签到,获得积分10
7秒前
CiCiCindy完成签到,获得积分10
7秒前
Alexander L完成签到,获得积分10
7秒前
Gary完成签到,获得积分10
8秒前
满意草丛完成签到,获得积分10
8秒前
纯真夏之发布了新的文献求助10
8秒前
大胆的绮兰完成签到,获得积分10
9秒前
9秒前
羊正完成签到,获得积分10
9秒前
10秒前
今天你还好吗完成签到 ,获得积分10
10秒前
康丽发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
medlive2020完成签到,获得积分10
12秒前
12秒前
ding应助xiezhenghong采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352476
求助须知:如何正确求助?哪些是违规求助? 4485321
关于积分的说明 13962707
捐赠科研通 4385239
什么是DOI,文献DOI怎么找? 2409332
邀请新用户注册赠送积分活动 1401777
关于科研通互助平台的介绍 1375357