Muscle Atrophy Evaluation via Radiomics Analysis Using Ultrasound Images: A Cohort Data Study

萎缩 肌肉萎缩 超声波 分级(工程) 特征选择 腓肠肌 步态分析 模式识别(心理学) 计算机科学 生物医学工程 医学 人工智能 骨骼肌 步态 解剖 病理 物理医学与康复 放射科 生物 生态学
作者
Yue Zhang,Getao Du,Yonghua Zhan,Kaitai Guo,Yang Zheng,Liang Tang,Jianzhong Guo,Jimin Liang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 3163-3174 被引量:10
标识
DOI:10.1109/tbme.2022.3162223
摘要

Existing methods for muscle atrophy evaluation based on muscle size measures from ultrasound images are inadequate in precision. Radiomics has been widely used in various medical studies, but its validity for the evaluation of muscle atrophy has not been fully explored.This study presents a radiomics analysis for muscle atrophy evaluation using ultrasound images. The hindlimb unloading rat model was developed to simulate weightlessness muscle atrophy and ultrasound images of the hind limbs were acquired for both the hindlimb unloaded (HU) and control groups during a 21-day HU period. A total of 368 radiomics features were extracted and the stable and informative features were selected through a two-stage feature selection procedure. The feature change trajectory of the stable features was analyzed using the hierarchical clustering method. Finally, an adaptive longitudinal feature selection and grading network, ALNet, was developed to evaluate muscle atrophy.The clustering trajectories of ultrasound image features showed similar trends to the changes in muscle atrophy at the molecular level. The best grading accuracy achieved by the ALNet was 79.5% for the Soleus (Sol) muscle and 82.6% for the Gastrocnemius (Gas) muscle.The test-retest is essential in performing radiomics analysis on ultrasound images. The longitudinal feature selection is important for muscle atrophy grading. The ultrasound image features of the Gas muscle have better discrimination ability than that of the Sol muscle. This study proves for the first time the capability of ultrasound image features for muscle atrophy evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feljqlik完成签到,获得积分10
1秒前
英俊的铭应助wyt1239012采纳,获得10
2秒前
欣喜的薯片完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
QiLe发布了新的文献求助20
5秒前
6秒前
蛋蛋完成签到 ,获得积分10
7秒前
111关注了科研通微信公众号
7秒前
三一完成签到,获得积分10
7秒前
8秒前
每㐬山风发布了新的文献求助10
8秒前
4114完成签到,获得积分10
9秒前
9秒前
嘿嘿嘿发布了新的文献求助10
13秒前
自觉雁玉发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
innocent完成签到 ,获得积分10
16秒前
小白鞋完成签到 ,获得积分10
16秒前
小二郎应助小涛哥采纳,获得10
17秒前
华仔应助饱满的问丝采纳,获得10
18秒前
yegechuanqi发布了新的文献求助10
18秒前
xiaoxuey发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
22秒前
nowss发布了新的文献求助10
24秒前
牛战士完成签到,获得积分10
24秒前
小蘑菇应助yegechuanqi采纳,获得10
26秒前
小透明完成签到,获得积分0
27秒前
热心市民完成签到 ,获得积分10
28秒前
徐若楠发布了新的文献求助10
29秒前
30秒前
30秒前
31秒前
徐若楠完成签到,获得积分10
33秒前
彭于晏应助Keira_Chang采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425164
求助须知:如何正确求助?哪些是违规求助? 4539269
关于积分的说明 14166518
捐赠科研通 4456411
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435224
关于科研通互助平台的介绍 1412564