Determination of the athletes' anaerobic threshold using machine learning methods

线性回归 无氧运动 随机森林 支持向量机 计算机科学 回归分析 最大VO2 统计 氧脉冲 梯度升压 人工智能 运动员 机器学习 数学 心率 物理疗法 医学 血压 放射科
作者
Alexander Chikov,Nikolay Egorov,Dmitry Medvedev,Svetlana Chikova,Evgeniy Pavlov,Павел Дробинцев,Alexander Krasichkov,Dmitrii Kaplun
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:73: 103414-103414 被引量:5
标识
DOI:10.1016/j.bspc.2021.103414
摘要

Physiological indicators at the anaerobic threshold (AT) are an important diagnostic criterion for determining the level of an athlete's fitness and one of the starting points for planning and adjusting the training process. To develop the model for determining athletes' AT, the results of 1273 observations of athletes aged 18–35 years were processed. Athletes performed a stepwise cardiopulmonary exercising test (CPET) on the treadmill to failure. Linear Regression, Random Forest Regression, Gradient Boosting, and Support Vector Regression (SVR) from the Scikit-learn library were used to determine the physiological parameters of energy supply at the AT. The best quality metrics for determining the AT were obtained by SVR, where the coefficient of determination for heart rate (HR), respiratory minute volume (V'E), oxygen consumption (VO2), emission of carbon dioxide (VCO2), oxygen pulse (O2/HR) was 0.82, 0.90, 0.87, 0.86, and 0.91, respectively. The special significance of the obtained model lies in the fact that it can be used to identify indicators and their quantitative values that limit the further development of the AT-based technique to plan and correct a training process. This feature was provided by the Local Interpretable Model-agnostic Explanations (LIME). LIME was used to explain the prediction of the developed model in an interpreted and accurate way by studying the model locally around the prediction. The developed model for determining the AT opens up new opportunities in the interpretation of CPET, will allow researchers to identify individual patterns that affect the test result, and, consequently, give more accurate recommendations for correcting the athletes' training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王乾龙发布了新的文献求助10
刚刚
1秒前
研友_Z72O4n发布了新的文献求助10
1秒前
1秒前
汉堡包应助机灵的幼菱采纳,获得10
2秒前
3秒前
3秒前
机智雪糕完成签到,获得积分10
3秒前
Wzh发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
jj完成签到,获得积分10
5秒前
5秒前
wxy发布了新的文献求助10
5秒前
6秒前
飞飞发布了新的文献求助10
6秒前
stella发布了新的文献求助10
6秒前
111完成签到,获得积分10
6秒前
6秒前
7秒前
chicagoboy完成签到,获得积分20
7秒前
撒撒188发布了新的文献求助10
8秒前
Elvis发布了新的文献求助10
8秒前
8秒前
8秒前
传奇3应助暗沟玩采纳,获得10
8秒前
523完成签到,获得积分10
9秒前
9秒前
Jade完成签到,获得积分10
9秒前
tina发布了新的文献求助10
9秒前
卡卡西应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
10秒前
卡卡西应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
yznfly应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
卡卡西应助科研通管家采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958799
求助须知:如何正确求助?哪些是违规求助? 3504983
关于积分的说明 11121652
捐赠科研通 3236440
什么是DOI,文献DOI怎么找? 1788768
邀请新用户注册赠送积分活动 871373
科研通“疑难数据库(出版商)”最低求助积分说明 802723