Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment

纳米复合材料 材料科学 生物医学工程 纳米技术 骨愈合 骨组织 再生(生物学) 表面改性 生物物理学 间充质干细胞 化学 细胞生物学 生物 解剖 工程类 生物化学 物理化学
作者
Xuehui Zhang,Chenguang Zhang,Yuanhua Lin,Penghao Hu,Yang Shen,Ke Wang,Meng Song,Yuan Chai,Xiaohan Dai,Xing Liu,Yun Liu,Xiaoju Mo,Cen Cao,Shue Li,Xuliang Deng,Lili Chen
出处
期刊:ACS Nano [American Chemical Society]
卷期号:10 (8): 7279-7286 被引量:226
标识
DOI:10.1021/acsnano.6b02247
摘要

Physiological electric potential is well-known for its indispensable role in maintaining bone volume and quality. Although implanted biomaterials simulating structural, morphological, mechanical, and chemical properties of natural tissue or organ has been introduced in the field of bone regeneration, the concept of restoring physiological electric microenvironment remains ignored in biomaterials design. In this work, a flexible nanocomposite membrane mimicking the endogenous electric potential is fabricated to explore its bone defect repair efficiency. BaTiO3 nanoparticles (BTO NPs) were first coated with polydopamine. Then the composite membranes are fabricated with homogeneous distribution of Dopa@BTO NPs in poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix. The surface potential of the nanocomposite membranes could be tuned up to −76.8 mV by optimizing the composition ratio and corona poling treatment, which conform to the level of endogenous biopotential. Remarkably, the surface potential of polarized nanocomposite membranes exhibited a dramatic stability with more than half of original surface potential remained up to 12 weeks in the condition of bone defect. In vitro, the membranes encouraged bone marrow mesenchymal stem cells (BM-MSCs) activity and osteogenic differentiation. In vivo, the membranes sustainably maintained the electric microenvironment giving rise to rapid bone regeneration and complete mature bone-structure formation. Our findings evidence that physiological electric potential repair should be paid sufficient attention in biomaterials design, and this concept might provide an innovative and well-suited strategy for bone regenerative therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田田完成签到 ,获得积分10
1秒前
艾绒完成签到,获得积分10
1秒前
wanci应助Julie采纳,获得10
1秒前
愉快千万完成签到,获得积分10
1秒前
alan完成签到,获得积分10
2秒前
阳光下的味道完成签到,获得积分10
3秒前
3秒前
A1phaYi完成签到,获得积分10
4秒前
4秒前
思源应助未解的波采纳,获得10
4秒前
medlive2020发布了新的文献求助10
5秒前
缓慢的萝发布了新的文献求助10
5秒前
陈秋发布了新的文献求助10
5秒前
6秒前
季冬十五完成签到 ,获得积分10
6秒前
9秒前
哈哈嘿发布了新的文献求助10
10秒前
清爽的源智完成签到,获得积分10
10秒前
11秒前
11秒前
SciGPT应助仙姑采纳,获得10
12秒前
无花果应助果果采纳,获得10
12秒前
科研通AI2S应助小林采纳,获得10
14秒前
15秒前
顾矜应助medlive2020采纳,获得10
15秒前
wyl发布了新的文献求助20
17秒前
我剑也未尝不利举报qi求助涉嫌违规
17秒前
丰泽园发布了新的文献求助10
17秒前
Jax233完成签到,获得积分10
19秒前
sschen完成签到,获得积分10
19秒前
自读发布了新的文献求助10
19秒前
19秒前
梨梨梨完成签到,获得积分10
20秒前
sujingbo完成签到 ,获得积分10
23秒前
不知道完成签到,获得积分10
23秒前
24秒前
嗯哼举报LC求助涉嫌违规
27秒前
danti发布了新的文献求助10
27秒前
自读完成签到,获得积分10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055219
求助须知:如何正确求助?哪些是违规求助? 2711930
关于积分的说明 7429296
捐赠科研通 2356744
什么是DOI,文献DOI怎么找? 1248265
科研通“疑难数据库(出版商)”最低求助积分说明 606677
版权声明 596083