Supervised Learning in Spiking Neural Networks with ReSuMe: Sequence Learning, Classification, and Spike Shifting

Spike(软件开发) 计算机科学 尖峰神经网络 集合(抽象数据类型) 人工智能 提炼听神经的脉冲 人工神经网络 财产(哲学) 任务(项目管理) 学习规律 监督学习 噪音(视频) 序列学习 模式识别(心理学) 机器学习 经济 管理 哲学 程序设计语言 图像(数学) 软件工程 认识论
作者
Filip Ponulak,Andrzej Kasiński
出处
期刊:Neural Computation [The MIT Press]
卷期号:22 (2): 467-510 被引量:546
标识
DOI:10.1162/neco.2009.11-08-901
摘要

Learning from instructions or demonstrations is a fundamental property of our brain necessary to acquire new knowledge and develop novel skills or behavioral patterns. This type of learning is thought to be involved in most of our daily routines. Although the concept of instruction-based learning has been studied for several decades, the exact neural mechanisms implementing this process remain unrevealed. One of the central questions in this regard is, How do neurons learn to reproduce template signals (instructions) encoded in precisely timed sequences of spikes? Here we present a model of supervised learning for biologically plausible neurons that addresses this question. In a set of experiments, we demonstrate that our approach enables us to train spiking neurons to reproduce arbitrary template spike patterns in response to given synaptic stimuli even in the presence of various sources of noise. We show that the learning rule can also be used for decision-making tasks. Neurons can be trained to classify categories of input signals based on only a temporal configuration of spikes. The decision is communicated by emitting precisely timed spike trains associated with given input categories. Trained neurons can perform the classification task correctly even if stimuli and corresponding decision times are temporally separated and the relevant information is consequently highly overlapped by the ongoing neural activity. Finally, we demonstrate that neurons can be trained to reproduce sequences of spikes with a controllable time shift with respect to target templates. A reproduced signal can follow or even precede the targets. This surprising result points out that spiking neurons can potentially be applied to forecast the behavior (firing times) of other reference neurons or networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助明理初之采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
HEIKU应助科研通管家采纳,获得20
6秒前
wanci应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
8秒前
woshibyu发布了新的文献求助10
9秒前
苗玉完成签到,获得积分10
10秒前
12秒前
sun发布了新的文献求助10
12秒前
完美世界应助李哈哈采纳,获得10
13秒前
SAINT发布了新的文献求助10
13秒前
jianglili应助半糖可乐采纳,获得10
14秒前
14秒前
善上完成签到,获得积分10
16秒前
可耐的无剑完成签到 ,获得积分10
17秒前
18秒前
18秒前
18秒前
20秒前
20秒前
小二郎应助钦川采纳,获得10
20秒前
21秒前
彭于晏应助美好的机器猫采纳,获得10
21秒前
李哈哈发布了新的文献求助10
21秒前
23秒前
善上发布了新的文献求助10
23秒前
fl发布了新的文献求助10
24秒前
24秒前
Raphael Zhang发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772930
求助须知:如何正确求助?哪些是违规求助? 3318514
关于积分的说明 10190471
捐赠科研通 3033215
什么是DOI,文献DOI怎么找? 1664233
邀请新用户注册赠送积分活动 796133
科研通“疑难数据库(出版商)”最低求助积分说明 757259