Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps

山崩 地质学 随机森林 逻辑回归 支持向量机 交叉验证 计算机科学 数据挖掘 地图学 统计 人工智能 机器学习 地貌学 数学 地理
作者
Stefan Steger,Alexander Brenning,Rainer Bell,Helene Petschko,Thomas Glade
出处
期刊:Geomorphology [Elsevier BV]
卷期号:262: 8-23 被引量:146
标识
DOI:10.1016/j.geomorph.2016.03.015
摘要

Empirical models are frequently applied to produce landslide susceptibility maps for large areas. Subsequent quantitative validation results are routinely used as the primary criteria to infer the validity and applicability of the final maps or to select one of several models. This study hypothesizes that such direct deductions can be misleading. The main objective was to explore discrepancies between the predictive performance of a landslide susceptibility model and the geomorphic plausibility of subsequent landslide susceptibility maps while a particular emphasis was placed on the influence of incomplete landslide inventories on modelling and validation results. The study was conducted within the Flysch Zone of Lower Austria (1,354 km2) which is known to be highly susceptible to landslides of the slide-type movement. Sixteen susceptibility models were generated by applying two statistical classifiers (logistic regression and generalized additive model) and two machine learning techniques (random forest and support vector machine) separately for two landslide inventories of differing completeness and two predictor sets. The results were validated quantitatively by estimating the area under the receiver operating characteristic curve (AUROC) with single holdout and spatial cross-validation technique. The heuristic evaluation of the geomorphic plausibility of the final results was supported by findings of an exploratory data analysis, an estimation of odds ratios and an evaluation of the spatial structure of the final maps. The results showed that maps generated by different inventories, classifiers and predictors appeared differently while holdout validation revealed similar high predictive performances. Spatial cross-validation proved useful to expose spatially varying inconsistencies of the modelling results while additionally providing evidence for slightly overfitted machine learning-based models. However, the highest predictive performances were obtained for maps that explicitly expressed geomorphically implausible relationships indicating that the predictive performance of a model might be misleading in the case a predictor systematically relates to a spatially consistent bias of the inventory. Furthermore, we observed that random forest-based maps displayed spatial artifacts. The most plausible susceptibility map of the study area showed smooth prediction surfaces while the underlying model revealed a high predictive capability and was generated with an accurate landslide inventory and predictors that did not directly describe a bias. However, none of the presented models was found to be completely unbiased. This study showed that high predictive performances cannot be equated with a high plausibility and applicability of subsequent landslide susceptibility maps. We suggest that greater emphasis should be placed on identifying confounding factors and biases in landslide inventories. A joint discussion between modelers and decision makers of the spatial pattern of the final susceptibility maps in the field might increase their acceptance and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然之云发布了新的文献求助10
1秒前
鬼笔环肽完成签到,获得积分10
2秒前
2秒前
世上僅有的榮光之路完成签到,获得积分0
4秒前
小稻草人应助哈桑士采纳,获得20
5秒前
研友_nv2krn完成签到 ,获得积分10
6秒前
果冻橙完成签到,获得积分10
6秒前
留白留白发布了新的文献求助10
7秒前
ming123ah完成签到,获得积分10
8秒前
徐笑松发布了新的文献求助10
8秒前
李6666完成签到 ,获得积分10
9秒前
ww完成签到,获得积分10
10秒前
寂寞的小夏完成签到,获得积分10
11秒前
中原第一深情完成签到,获得积分10
11秒前
RayLam完成签到,获得积分10
11秒前
12秒前
张张发布了新的文献求助30
14秒前
我是唐不是傻完成签到,获得积分10
15秒前
自然之云完成签到,获得积分10
15秒前
滴滴滴完成签到,获得积分10
16秒前
阿士大夫完成签到,获得积分10
16秒前
17秒前
典雅的曼冬完成签到,获得积分10
18秒前
烛天完成签到,获得积分10
19秒前
Yoo完成签到 ,获得积分10
19秒前
你倒是发啊完成签到,获得积分10
20秒前
留白留白完成签到,获得积分10
21秒前
kekekek完成签到 ,获得积分10
22秒前
六个核桃完成签到,获得积分10
22秒前
三颗石头完成签到,获得积分10
23秒前
c123完成签到 ,获得积分10
23秒前
十五完成签到,获得积分10
24秒前
jixuchance完成签到,获得积分10
24秒前
LM完成签到,获得积分10
25秒前
无用的老董西完成签到 ,获得积分10
26秒前
Sew东坡发布了新的文献求助10
27秒前
小杨完成签到,获得积分10
27秒前
27秒前
sen123完成签到,获得积分10
27秒前
瘦瘦的枫叶完成签到 ,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027