Handbook of Genetic Algorithms

术语 计算机科学 选择(遗传算法) 主题(文档) 领域(数学) 算法 代表(政治) 余数 遗传算法 人工智能 管理科学 数据科学 机器学习 数学 工程类 算术 万维网 哲学 语言学 政治 政治学 纯数学 法学
作者
Lloyd M. Davis
摘要

This book sets out to explain what genetic algorithms are and how they can be used to solve real-world problems. The first objective is tackled by the editor, Lawrence Davis. The remainder of the book is turned over to a series of short review articles by a collection of authors, each explaining how genetic algorithms have been applied to problems in their own specific area of interest. The first part of the book introduces the fundamental genetic algorithm (GA), explains how it has traditionally been designed and implemented and shows how the basic technique may be applied to a very simple numerical optimisation problem. The basic technique is then altered and refined in a number of ways, with the effects of each change being measured by comparison against the performance of the original. In this way, the reader is provided with an uncluttered introduction to the technique and learns to appreciate why certain variants of GA have become more popular than others in the scientific community. Davis stresses that the choice of a suitable representation for the problem in hand is a key step in applying the GA, as is the selection of suitable techniques for generating new solutions from old. He is refreshingly open in admitting that much of the business of adapting the GA to specific problems owes more to art than to science. It is nice to see the terminology associated with this subject explained, with the author stressing that much of the field is still an active area of research. Few assumptions are made about the reader's mathematical background. The second part of the book contains thirteen cameo descriptions of how genetic algorithmic techniques have been, or are being, applied to a diverse range of problems. Thus, one group of authors explains how the technique has been used for modelling arms races between neighbouring countries (a non- linear, dynamical system), while another group describes its use in deciding design trade-offs for military aircraft. My own favourite is a rather charming account of how the GA was applied to a series of scheduling problems. Having attempted something of this sort with Simulated Annealing, I found it refreshing to see the authors highlighting some of the problems that they had encountered, rather than sweeping them under the carpet as is so often done in the scientific literature. The editor points out that there are standard GA tools available for either play or serious development work. Two of these (GENESIS and OOGA) are described in a short, third part of the book. As is so often the case nowadays, it is possible to obtain a diskette containing both systems by sending your Visa card details (or $60) to an address in the USA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不会学术的羊完成签到,获得积分10
2秒前
长安完成签到,获得积分10
2秒前
3秒前
细心健柏完成签到 ,获得积分10
3秒前
111完成签到,获得积分10
4秒前
spring079完成签到,获得积分10
5秒前
yazhu发布了新的文献求助200
7秒前
莫溪月发布了新的文献求助10
8秒前
gloria发布了新的文献求助10
9秒前
夏雨微凉完成签到,获得积分10
10秒前
10完成签到 ,获得积分10
10秒前
深情的鞯完成签到,获得积分10
10秒前
科研路上的干饭桶完成签到,获得积分10
12秒前
正直千兰完成签到,获得积分10
16秒前
Isaac完成签到,获得积分10
16秒前
20秒前
21秒前
pluto应助sunshine采纳,获得10
22秒前
机智的紫丝完成签到,获得积分10
23秒前
加墨发布了新的文献求助30
25秒前
嘉星糖完成签到,获得积分10
26秒前
acutelily发布了新的文献求助10
27秒前
28秒前
wuxidixi完成签到 ,获得积分10
30秒前
30秒前
Ewkdebowen关注了科研通微信公众号
30秒前
Dawn2000完成签到,获得积分10
31秒前
周周zy发布了新的文献求助10
32秒前
曲聋五完成签到 ,获得积分10
33秒前
33秒前
loulan完成签到,获得积分10
34秒前
嫤姝完成签到,获得积分10
35秒前
36秒前
含蓄妖丽完成签到 ,获得积分10
36秒前
zss完成签到,获得积分10
36秒前
37秒前
37秒前
37秒前
郭一完成签到,获得积分10
38秒前
研友_Tensor完成签到 ,获得积分10
38秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464245
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057583
捐赠科研通 2747637
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696083