Computationally predicting protein-RNA interactions using only positive and unlabeled examples

支持向量机 水准点(测量) 人工智能 计算机科学 特征选择 机器学习 滤波器(信号处理) 特征(语言学) 数据挖掘 特征向量 模式识别(心理学) 语言学 哲学 大地测量学 计算机视觉 地理
作者
Zhanzhan Cheng,Shuigeng Zhou,Jihong Guan
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:13 (03): 1541005-1541005 被引量:29
标识
DOI:10.1142/s021972001541005x
摘要

Protein–RNA interactions (PRIs) are considerably important in a wide variety of cellular processes, ranging from transcriptional and post-transcriptional regulations of gene expression to the active defense of host against virus. With the development of high throughput technology, large amounts of PRI information is available for computationally predicting unknown PRIs. In recent years, a number of computational methods for predicting PRIs have been developed in the literature, which usually artificially construct negative samples based on verified nonredundant datasets of PRIs to train classifiers. However, such negative samples are not real negative samples, some even may be unknown positive samples. Consequently, the classifiers trained with such training datasets cannot achieve satisfactory prediction performance. In this paper, we propose a novel method PRIPU that employs biased-support vector machine (SVM) for predicting Protein-RNA Interactions using only Positive and Unlabeled examples. To the best of our knowledge, this is the first work that predicts PRIs using only positive and unlabeled samples. We first collect known PRIs as our benchmark datasets and extract sequence-based features to represent each PRI. To reduce the dimension of feature vectors for lowering computational cost, we select a subset of features by a filter-based feature selection method. Then, biased-SVM is employed to train prediction models with different PRI datasets. To evaluate the new method, we also propose a new performance measure called explicit positive recall (EPR), which is specifically suitable for the task of learning positive and unlabeled data. Experimental results over three datasets show that our method not only outperforms four existing methods, but also is able to predict unknown PRIs. Source code, datasets and related documents of PRIPU are available at: http://admis.fudan.edu.cn/projects/pripu.htm .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
球球昂完成签到,获得积分10
刚刚
1秒前
2秒前
5秒前
XJ应助顺利紫山采纳,获得10
5秒前
6秒前
钟美莲发布了新的文献求助10
7秒前
9秒前
10秒前
红宝石设计局完成签到,获得积分10
12秒前
13秒前
沉默完成签到,获得积分10
18秒前
小诗发布了新的文献求助30
18秒前
20秒前
22秒前
烟花应助Hayat采纳,获得10
24秒前
难过大神完成签到,获得积分10
25秒前
cdercder应助Rjy采纳,获得10
25秒前
27秒前
27秒前
彭于晏应助dasfdufos采纳,获得10
28秒前
mo发布了新的文献求助20
28秒前
马凯完成签到,获得积分10
28秒前
28秒前
小诗完成签到,获得积分20
28秒前
Baekhyun完成签到,获得积分10
28秒前
loin发布了新的文献求助30
32秒前
刻苦鼠标发布了新的文献求助20
32秒前
Orange应助科研通管家采纳,获得10
35秒前
元谷雪应助科研通管家采纳,获得10
35秒前
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得30
35秒前
科研通AI5应助科研通管家采纳,获得200
35秒前
栀晴应助科研通管家采纳,获得20
35秒前
Owen应助Zurlliant采纳,获得10
35秒前
bkagyin应助科研通管家采纳,获得10
35秒前
35秒前
大个应助凌兰采纳,获得10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901