Qualitative analysis of a Lotka-Volterra competition system with advection

有界函数 数学 平流 人口 数学分析 分叉 扩散 统计物理学 非线性系统 物理 热力学 人口学 量子力学 社会学
作者
Qi Wang,Chunyi Gai,Jingda Yan
出处
期刊:Discrete and Continuous Dynamical Systems [American Institute of Mathematical Sciences]
卷期号:35 (3): 1239-1284 被引量:31
标识
DOI:10.3934/dcds.2015.35.1239
摘要

We study a diffusive Lotka-Volterra competition system with advection under Neumann boundary conditions. Our system models a competition relationship that one species escape from the region of high population density of their competitors in order to avoid competitions. We establish the global existence of bounded classical solutions for the system in one-dimensional domain. For multi-dimensional domains, globally bounded classical solutions are obtained for a parabolic-elliptic system under proper assumptions on the system parameters. These global existence results make it possible to study bounded steady states in order to model species segregation phenomenon. We then investigate the stationary problem in one-dimensional domains. Through bifurcation theory, we obtain the existence of nonconstant positive steady states, which are small perturbations from the positive equilibrium; we also study the stability of these bifurcating solutions when the diffusion coefficient of the escaper is large and the diffusion coefficient of its competitor is small. In the limit of large advection rate, we show that the reaction-advection-diffusion system converges to a shadow system involving the competitor population density and an unknown positive constant. The existence and stability of positive solutions to the shadow system have also been obtained through bifurcation theories. Finally, we construct positive solutions with an interior transition layer to the shadow system when the crowding rate of the escaper and the diffusion rate of its interspecific competitors are sufficiently small. The transition-layer solutions can be used to model the species segregation phenomenon.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hangjias完成签到 ,获得积分10
刚刚
大模型应助陈思思采纳,获得10
刚刚
如意的冬瓜关注了科研通微信公众号
刚刚
星辰大海应助于沁冉采纳,获得10
1秒前
星河完成签到,获得积分10
1秒前
烟花应助董先生采纳,获得10
1秒前
1秒前
1秒前
FashionBoy应助淡淡的卿采纳,获得10
1秒前
0517完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
dxxcshin完成签到,获得积分10
3秒前
3秒前
4秒前
水123发布了新的文献求助10
4秒前
露露发布了新的文献求助10
5秒前
hey应助zake采纳,获得20
5秒前
江海小舟完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
贤惠的伟泽完成签到,获得积分10
7秒前
无奈擎苍完成签到,获得积分10
7秒前
lin完成签到,获得积分10
7秒前
勇者义彦发布了新的文献求助10
7秒前
科研通AI6应助三冬四夏采纳,获得10
8秒前
8秒前
8秒前
沉默的从安完成签到,获得积分10
9秒前
年糕.完成签到,获得积分10
9秒前
9秒前
受伤芝麻发布了新的文献求助10
9秒前
9秒前
9秒前
于沁冉完成签到,获得积分10
10秒前
10秒前
Zxc发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601254
求助须知:如何正确求助?哪些是违规求助? 4686675
关于积分的说明 14845664
捐赠科研通 4680054
什么是DOI,文献DOI怎么找? 2539261
邀请新用户注册赠送积分活动 1506128
关于科研通互助平台的介绍 1471283