亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Qualitative analysis of a Lotka-Volterra competition system with advection

有界函数 数学 平流 人口 数学分析 分叉 扩散 统计物理学 非线性系统 物理 热力学 人口学 量子力学 社会学
作者
Qi Wang,Chunyi Gai,Jingda Yan
出处
期刊:Discrete and Continuous Dynamical Systems [American Institute of Mathematical Sciences]
卷期号:35 (3): 1239-1284 被引量:31
标识
DOI:10.3934/dcds.2015.35.1239
摘要

We study a diffusive Lotka-Volterra competition system with advection under Neumann boundary conditions. Our system models a competition relationship that one species escape from the region of high population density of their competitors in order to avoid competitions. We establish the global existence of bounded classical solutions for the system in one-dimensional domain. For multi-dimensional domains, globally bounded classical solutions are obtained for a parabolic-elliptic system under proper assumptions on the system parameters. These global existence results make it possible to study bounded steady states in order to model species segregation phenomenon. We then investigate the stationary problem in one-dimensional domains. Through bifurcation theory, we obtain the existence of nonconstant positive steady states, which are small perturbations from the positive equilibrium; we also study the stability of these bifurcating solutions when the diffusion coefficient of the escaper is large and the diffusion coefficient of its competitor is small. In the limit of large advection rate, we show that the reaction-advection-diffusion system converges to a shadow system involving the competitor population density and an unknown positive constant. The existence and stability of positive solutions to the shadow system have also been obtained through bifurcation theories. Finally, we construct positive solutions with an interior transition layer to the shadow system when the crowding rate of the escaper and the diffusion rate of its interspecific competitors are sufficiently small. The transition-layer solutions can be used to model the species segregation phenomenon.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhnn完成签到,获得积分10
1秒前
3秒前
nobody12004发布了新的文献求助30
3秒前
Jiong完成签到,获得积分10
7秒前
淡定语发布了新的文献求助10
9秒前
13秒前
俭朴蜜蜂完成签到 ,获得积分10
14秒前
26秒前
32秒前
我是老大应助Amber采纳,获得10
33秒前
Anlocia发布了新的文献求助10
35秒前
大模型应助Amber采纳,获得10
39秒前
星辰大海应助Amber采纳,获得10
43秒前
50秒前
华仔应助Amber采纳,获得10
51秒前
科研通AI6应助123采纳,获得10
52秒前
54秒前
科研通AI6应助烟消云散采纳,获得10
54秒前
58秒前
世良发布了新的文献求助10
59秒前
顾矜应助世良采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得30
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
九月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
bellapp完成签到 ,获得积分10
1分钟前
Anlocia发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
萝卜特乐完成签到,获得积分10
1分钟前
Laura完成签到,获得积分10
1分钟前
xiaozhou完成签到,获得积分10
1分钟前
hbWang完成签到,获得积分10
1分钟前
1分钟前
CodeCraft应助hbWang采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650722
求助须知:如何正确求助?哪些是违规求助? 4781542
关于积分的说明 15052547
捐赠科研通 4809550
什么是DOI,文献DOI怎么找? 2572377
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487367