Qualitative analysis of a Lotka-Volterra competition system with advection

有界函数 数学 平流 人口 数学分析 分叉 扩散 统计物理学 非线性系统 物理 热力学 人口学 量子力学 社会学
作者
Qi Wang,Chunyi Gai,Jingda Yan
出处
期刊:Discrete and Continuous Dynamical Systems [American Institute of Mathematical Sciences]
卷期号:35 (3): 1239-1284 被引量:31
标识
DOI:10.3934/dcds.2015.35.1239
摘要

We study a diffusive Lotka-Volterra competition system with advection under Neumann boundary conditions. Our system models a competition relationship that one species escape from the region of high population density of their competitors in order to avoid competitions. We establish the global existence of bounded classical solutions for the system in one-dimensional domain. For multi-dimensional domains, globally bounded classical solutions are obtained for a parabolic-elliptic system under proper assumptions on the system parameters. These global existence results make it possible to study bounded steady states in order to model species segregation phenomenon. We then investigate the stationary problem in one-dimensional domains. Through bifurcation theory, we obtain the existence of nonconstant positive steady states, which are small perturbations from the positive equilibrium; we also study the stability of these bifurcating solutions when the diffusion coefficient of the escaper is large and the diffusion coefficient of its competitor is small. In the limit of large advection rate, we show that the reaction-advection-diffusion system converges to a shadow system involving the competitor population density and an unknown positive constant. The existence and stability of positive solutions to the shadow system have also been obtained through bifurcation theories. Finally, we construct positive solutions with an interior transition layer to the shadow system when the crowding rate of the escaper and the diffusion rate of its interspecific competitors are sufficiently small. The transition-layer solutions can be used to model the species segregation phenomenon.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizimu发布了新的文献求助10
1秒前
Elsa完成签到 ,获得积分10
1秒前
QQ完成签到 ,获得积分10
4秒前
芊芊完成签到 ,获得积分10
5秒前
5秒前
0001发布了新的文献求助10
5秒前
tracer526发布了新的文献求助10
8秒前
3344完成签到,获得积分10
9秒前
9秒前
10秒前
BWRESEARCH完成签到,获得积分10
12秒前
Verity应助我要那片海采纳,获得10
12秒前
张逍遥发布了新的文献求助10
13秒前
warithy应助科研通管家采纳,获得10
14秒前
yyzhou应助科研通管家采纳,获得10
14秒前
15秒前
蓝天应助科研通管家采纳,获得10
15秒前
飘飘玲应助科研通管家采纳,获得10
15秒前
Zewen_Li应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
六月疏雨应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
yyzhou应助科研通管家采纳,获得10
15秒前
Zewen_Li应助科研通管家采纳,获得10
15秒前
Ting完成签到,获得积分10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
六月疏雨应助科研通管家采纳,获得10
15秒前
GE应助科研通管家采纳,获得10
15秒前
蓝天应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
六月疏雨应助科研通管家采纳,获得10
15秒前
shhoing应助科研通管家采纳,获得10
15秒前
yyzhou应助科研通管家采纳,获得10
15秒前
15秒前
萨尔莫斯发布了新的文献求助10
20秒前
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951