Qualitative analysis of a Lotka-Volterra competition system with advection

有界函数 数学 平流 人口 数学分析 分叉 扩散 统计物理学 非线性系统 物理 热力学 人口学 量子力学 社会学
作者
Qi Wang,Chunyi Gai,Jingda Yan
出处
期刊:Discrete and Continuous Dynamical Systems [American Institute of Mathematical Sciences]
卷期号:35 (3): 1239-1284 被引量:31
标识
DOI:10.3934/dcds.2015.35.1239
摘要

We study a diffusive Lotka-Volterra competition system with advection under Neumann boundary conditions. Our system models a competition relationship that one species escape from the region of high population density of their competitors in order to avoid competitions. We establish the global existence of bounded classical solutions for the system in one-dimensional domain. For multi-dimensional domains, globally bounded classical solutions are obtained for a parabolic-elliptic system under proper assumptions on the system parameters. These global existence results make it possible to study bounded steady states in order to model species segregation phenomenon. We then investigate the stationary problem in one-dimensional domains. Through bifurcation theory, we obtain the existence of nonconstant positive steady states, which are small perturbations from the positive equilibrium; we also study the stability of these bifurcating solutions when the diffusion coefficient of the escaper is large and the diffusion coefficient of its competitor is small. In the limit of large advection rate, we show that the reaction-advection-diffusion system converges to a shadow system involving the competitor population density and an unknown positive constant. The existence and stability of positive solutions to the shadow system have also been obtained through bifurcation theories. Finally, we construct positive solutions with an interior transition layer to the shadow system when the crowding rate of the escaper and the diffusion rate of its interspecific competitors are sufficiently small. The transition-layer solutions can be used to model the species segregation phenomenon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萨博发布了新的文献求助10
1秒前
Akim应助红鲤鱼的驴采纳,获得10
1秒前
1秒前
天天快乐应助强砸采纳,获得10
2秒前
21完成签到,获得积分10
2秒前
菠萝完成签到 ,获得积分10
2秒前
3秒前
梁宽发布了新的文献求助10
4秒前
叶子完成签到,获得积分10
4秒前
zhuww完成签到,获得积分10
5秒前
5秒前
6秒前
美丽万怨发布了新的文献求助10
9秒前
今后应助智慧牙采纳,获得10
9秒前
框郑完成签到 ,获得积分10
10秒前
12秒前
Vicky完成签到 ,获得积分10
12秒前
在水一方应助商南风采纳,获得20
12秒前
13秒前
爆米花应助莫道桑榆采纳,获得10
14秒前
研友_VZG7GZ应助314gjj采纳,获得10
14秒前
今天发CNS了嘛完成签到,获得积分10
15秒前
月落杉松晚完成签到,获得积分10
15秒前
swy发布了新的文献求助10
17秒前
菠萝完成签到 ,获得积分10
18秒前
18秒前
终澈发布了新的文献求助10
18秒前
星辰大海应助冉冰采纳,获得50
18秒前
19秒前
Kathy完成签到,获得积分10
19秒前
bewh应助caq采纳,获得10
19秒前
YK_WY完成签到,获得积分10
22秒前
liang发布了新的文献求助20
22秒前
Tugeouc应助欧阳采纳,获得10
22秒前
Tugeouc应助欧阳采纳,获得10
22秒前
casset完成签到,获得积分10
22秒前
汪洋浮萍一道开完成签到,获得积分10
23秒前
一一应助314gjj采纳,获得10
23秒前
23秒前
知道发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749398
求助须知:如何正确求助?哪些是违规求助? 3292576
关于积分的说明 10077250
捐赠科研通 3008034
什么是DOI,文献DOI怎么找? 1652003
邀请新用户注册赠送积分活动 786962
科研通“疑难数据库(出版商)”最低求助积分说明 751906