材料科学
薄脆饼
研磨
表面粗糙度
抛光
表面完整性
硅
激光器
通量
钻石
纳米压痕
金刚石车削
单晶硅
复合材料
辐照
光学
表面光洁度
机械加工
光电子学
冶金
核物理学
物理
作者
Keiichiro Niitsu,Yu Tayama,Takatoshi Kato,Jiwang Yan
出处
期刊:Surface topography
[IOP Publishing]
日期:2019-02-07
卷期号:7 (1): 015013-015013
被引量:9
标识
DOI:10.1088/2051-672x/aafe3c
摘要
The edges and notches of silicon wafers are usually machined by diamond grinding, and the grinding-induced subsurface damage causes wafer breakage and particle contamination problems. However, the edge and notch surfaces have large curvature and sharp corners, thus it is difficult to be finished by chemo-mechanical polishing. In this study, a nanosecond pulsed Nd:YAG laser was used to irradiate the edge and notch of a boron-doped single-crystal silicon wafer to recover the grinding-induced subsurface damage. The reflection loss and the change of laser fluence when irradiating a curved surface were considered, and the damage recovery behavior was investigated. The surface roughness, crystallinity, and hardness of the laser recovered region were measured by using white light interferometry, laser micro-Raman spectroscopy, and nanoindentation, respectively. The results showed that after laser irradiation the damaged region was recovered to a single-crystal structure with nanometric surface roughness, and the surface hardness was also improved. This study demonstrates that laser recovery is a promising post-grinding process for improving the surface integrity of the edge and notch of silicon wafers.
科研通智能强力驱动
Strongly Powered by AbleSci AI