The role of public challenges and data sets towards algorithm development, trust, and use in clinical practice

工作流程 计算机科学 人工智能 多样性(控制论) 分类 数据科学 机器学习 医学 数据整理 数据库
作者
Veronica Rotemberg,Allan C. Halpern,Stephen W. Dusza,Noel C. F. Codella
出处
期刊:Seminars in Cutaneous Medicine and Surgery [Frontline Medical Communications, Inc.]
卷期号:38 (1): E38-E42 被引量:18
标识
DOI:10.12788/j.sder.2019.013
摘要

In the past decade, machine learning and artificial intelligence have made significant advancements in pattern analysis, including speech and natural language processing, image recognition, object detection, facial recognition, and action categorization. Indeed, in many of these applications, accuracy has reached or exceeded human levels of performance. Subsequently, a multitude of studies have begun to examine the application of these technologies to health care, and in particular, medical image analysis. Perhaps the most difficult subdomain involves skin imaging because of the lack of standards around imaging hardware, technique, color, and lighting conditions. In addition, unlike radiological images, skin image appearance can be significantly affected by skin tone as well as the broad range of diseases. Furthermore, automated algorithm development relies on large high-quality annotated image data sets that incorporate the breadth of this circumstantial and diagnostic variety. These issues, in combination with unique complexities regarding integrating artificial intelligence systems into a clinical workflow, have led to difficulty in using these systems to improve sensitivity and specificity of skin diagnostics in health care networks around the world. In this article, we summarize recent advancements in machine learning, with a focused perspective on the role of public challenges and data sets on the progression of these technologies in skin imaging. In addition, we highlight the remaining hurdles toward effective implementation of technologies to the clinical workflow and discuss how public challenges and data sets can catalyze the development of solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助zj采纳,获得10
2秒前
巧克力大王完成签到 ,获得积分10
3秒前
4秒前
赵立韶华完成签到,获得积分10
5秒前
5秒前
6秒前
HonglinGao发布了新的文献求助10
6秒前
css1997完成签到 ,获得积分10
6秒前
momo完成签到,获得积分10
7秒前
李健的粉丝团团长应助Luke采纳,获得10
9秒前
Din完成签到 ,获得积分10
11秒前
高发发布了新的文献求助10
11秒前
XTM发布了新的文献求助10
11秒前
成一发布了新的文献求助10
12秒前
13秒前
郭灰灰发布了新的文献求助10
13秒前
13秒前
矮小的寒天完成签到,获得积分10
13秒前
典雅的夜安完成签到,获得积分10
15秒前
桃桃不加冰完成签到,获得积分20
15秒前
酷波er应助皮皮采纳,获得10
16秒前
木易完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
锋回露转123完成签到,获得积分10
17秒前
18秒前
19秒前
行7发布了新的文献求助10
21秒前
POWER完成签到,获得积分10
21秒前
21秒前
Luke发布了新的文献求助10
21秒前
22秒前
IAMXC发布了新的文献求助10
22秒前
打打应助WTX采纳,获得10
22秒前
飞舞的青鱼完成签到,获得积分10
22秒前
23秒前
23秒前
lin完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143779
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814327
捐赠科研通 2451315
什么是DOI,文献DOI怎么找? 1304413
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601419