肖特基势垒
半导体
工作职能
材料科学
范德瓦尔斯力
肖特基二极管
凝聚态物理
光电子学
费米能级
金属半导体结
物理
纳米技术
化学
电子
二极管
分子
量子力学
有机化学
图层(电子)
作者
Yuan Liu,Jian Guo,Enbo Zhu,Lei Liao,Sung‐Joon Lee,Mengning Ding,Imran Shakir,Vincent Gambin,Yu Huang,Xiangfeng Duan
出处
期刊:Nature
[Springer Nature]
日期:2018-05-01
卷期号:557 (7707): 696-700
被引量:1418
标识
DOI:10.1038/s41586-018-0129-8
摘要
The junctions formed at the contact between metallic electrodes and semiconductor materials are crucial components of electronic and optoelectronic devices 1 . Metal-semiconductor junctions are characterized by an energy barrier known as the Schottky barrier, whose height can, in the ideal case, be predicted by the Schottky-Mott rule2-4 on the basis of the relative alignment of energy levels. Such ideal physics has rarely been experimentally realized, however, because of the inevitable chemical disorder and Fermi-level pinning at typical metal-semiconductor interfaces2,5-12. Here we report the creation of van der Waals metal-semiconductor junctions in which atomically flat metal thin films are laminated onto two-dimensional semiconductors without direct chemical bonding, creating an interface that is essentially free from chemical disorder and Fermi-level pinning. The Schottky barrier height, which approaches the Schottky-Mott limit, is dictated by the work function of the metal and is thus highly tunable. By transferring metal films (silver or platinum) with a work function that matches the conduction band or valence band edges of molybdenum sulfide, we achieve transistors with a two-terminal electron mobility at room temperature of 260 centimetres squared per volt per second and a hole mobility of 175 centimetres squared per volt per second. Furthermore, by using asymmetric contact pairs with different work functions, we demonstrate a silver/molybdenum sulfide/platinum photodiode with an open-circuit voltage of 1.02 volts. Our study not only experimentally validates the fundamental limit of ideal metal-semiconductor junctions but also defines a highly efficient and damage-free strategy for metal integration that could be used in high-performance electronics and optoelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI