Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms

医学 乳腺摄影术 乳腺癌 置信区间 恶性肿瘤 接收机工作特性 双雷达 乳房成像 健康档案 回顾性队列研究 放射科 试验装置 机器学习 人工智能 内科学 妇科 癌症 乳腺癌筛查 医疗保健 计算机科学 经济 经济增长
作者
Ayelet Akselrod-Ballin,Michal Chorev,Yoel Shoshan,Adam Spiro,Alon Hazan,Roie Melamed,Ella Barkan,Esma Herzel,Shaked Naor,Ehud Karavani,Gideon Koren,Yaara Goldschmidt,Varda Shalev,Michal Rosen-Zvi,Michal Guindy
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (2): 331-342 被引量:139
标识
DOI:10.1148/radiol.2019182622
摘要

Background Computational models on the basis of deep neural networks are increasingly used to analyze health care data. However, the efficacy of traditional computational models in radiology is a matter of debate. Purpose To evaluate the accuracy and efficiency of a combined machine and deep learning approach for early breast cancer detection applied to a linked set of digital mammography images and electronic health records. Materials and Methods In this retrospective study, 52 936 images were collected in 13 234 women who underwent at least one mammogram between 2013 and 2017, and who had health records for at least 1 year before undergoing mammography. The algorithm was trained on 9611 mammograms and health records of women to make two breast cancer predictions: to predict biopsy malignancy and to differentiate normal from abnormal screening examinations. The study estimated the association of features with outcomes by using t test and Fisher exact test. The model comparisons were performed with a 95% confidence interval (CI) or by using the DeLong test. Results The resulting algorithm was validated in 1055 women and tested in 2548 women (mean age, 55 years ± 10 [standard deviation]). In the test set, the algorithm identified 34 of 71 (48%) false-negative findings on mammograms. For the malignancy prediction objective, the algorithm obtained an area under the receiver operating characteristic curve (AUC) of 0.91 (95% CI: 0.89, 0.93), with specificity of 77.3% (95% CI: 69.2%, 85.4%) at a sensitivity of 87%. When trained on clinical data alone, the model performed significantly better than the Gail model (AUC, 0.78 vs 0.54, respectively; P < .004). Conclusion The algorithm, which combined machine-learning and deep-learning approaches, can be applied to assess breast cancer at a level comparable to radiologists and has the potential to substantially reduce missed diagnoses of breast cancer. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
光亮的自行车完成签到,获得积分0
5秒前
6秒前
wangwei发布了新的文献求助10
9秒前
凶狠的白桃完成签到 ,获得积分10
9秒前
innocence2000完成签到 ,获得积分10
11秒前
牛马发布了新的文献求助10
15秒前
小胖完成签到 ,获得积分10
19秒前
柚子皮完成签到,获得积分10
20秒前
23秒前
hakuna_matata完成签到 ,获得积分10
23秒前
柚子皮发布了新的文献求助10
26秒前
Q_完成签到 ,获得积分10
27秒前
舒心靖琪完成签到 ,获得积分10
33秒前
MUAN完成签到 ,获得积分10
34秒前
swordshine完成签到,获得积分10
34秒前
任性的皮卡丘完成签到 ,获得积分10
37秒前
linhuafeng完成签到 ,获得积分10
37秒前
简奥斯汀完成签到 ,获得积分10
41秒前
克姑美完成签到 ,获得积分10
42秒前
小杨完成签到 ,获得积分10
43秒前
46秒前
闪闪的谷梦完成签到 ,获得积分10
49秒前
无奈的萝完成签到,获得积分10
53秒前
aldehyde应助leo采纳,获得10
54秒前
研友_nqv5WZ完成签到 ,获得积分10
57秒前
老实乌冬面完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
shxxy123完成签到 ,获得积分10
1分钟前
研都不研了完成签到 ,获得积分10
1分钟前
1分钟前
含糊的代丝完成签到 ,获得积分10
1分钟前
1分钟前
一只滦完成签到,获得积分10
1分钟前
xiaoyi完成签到 ,获得积分10
1分钟前
专一的傲白完成签到 ,获得积分10
1分钟前
1分钟前
tuanhust完成签到,获得积分0
1分钟前
跳跃的白云完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167370
捐赠科研通 3248804
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664