Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms

医学 乳腺摄影术 乳腺癌 置信区间 恶性肿瘤 接收机工作特性 双雷达 乳房成像 健康档案 回顾性队列研究 放射科 试验装置 机器学习 人工智能 内科学 妇科 癌症 乳腺癌筛查 医疗保健 计算机科学 经济 经济增长
作者
Ayelet Akselrod-Ballin,Michal Chorev,Yoel Shoshan,Adam Spiro,Alon Hazan,Roie Melamed,Ella Barkan,Esma Herzel,Shaked Naor,Ehud Karavani,Gideon Koren,Yaara Goldschmidt,Varda Shalev,Michal Rosen-Zvi,Michal Guindy
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (2): 331-342 被引量:139
标识
DOI:10.1148/radiol.2019182622
摘要

Background Computational models on the basis of deep neural networks are increasingly used to analyze health care data. However, the efficacy of traditional computational models in radiology is a matter of debate. Purpose To evaluate the accuracy and efficiency of a combined machine and deep learning approach for early breast cancer detection applied to a linked set of digital mammography images and electronic health records. Materials and Methods In this retrospective study, 52 936 images were collected in 13 234 women who underwent at least one mammogram between 2013 and 2017, and who had health records for at least 1 year before undergoing mammography. The algorithm was trained on 9611 mammograms and health records of women to make two breast cancer predictions: to predict biopsy malignancy and to differentiate normal from abnormal screening examinations. The study estimated the association of features with outcomes by using t test and Fisher exact test. The model comparisons were performed with a 95% confidence interval (CI) or by using the DeLong test. Results The resulting algorithm was validated in 1055 women and tested in 2548 women (mean age, 55 years ± 10 [standard deviation]). In the test set, the algorithm identified 34 of 71 (48%) false-negative findings on mammograms. For the malignancy prediction objective, the algorithm obtained an area under the receiver operating characteristic curve (AUC) of 0.91 (95% CI: 0.89, 0.93), with specificity of 77.3% (95% CI: 69.2%, 85.4%) at a sensitivity of 87%. When trained on clinical data alone, the model performed significantly better than the Gail model (AUC, 0.78 vs 0.54, respectively; P < .004). Conclusion The algorithm, which combined machine-learning and deep-learning approaches, can be applied to assess breast cancer at a level comparable to radiologists and has the potential to substantially reduce missed diagnoses of breast cancer. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lynn完成签到,获得积分10
刚刚
3秒前
4秒前
JL完成签到,获得积分10
6秒前
cc关闭了cc文献求助
9秒前
北欧海盗完成签到,获得积分10
11秒前
11秒前
鳗鱼凡旋发布了新的文献求助10
12秒前
可爱的函函应助孝铮采纳,获得10
12秒前
哭泣的映寒完成签到 ,获得积分10
13秒前
13秒前
清新的寄翠完成签到 ,获得积分10
14秒前
knn发布了新的文献求助10
14秒前
15秒前
16秒前
WXR0721完成签到,获得积分10
17秒前
陶火桃发布了新的文献求助10
17秒前
18秒前
19秒前
chant发布了新的文献求助10
19秒前
可爱的函函应助WXR0721采纳,获得10
21秒前
养猪大户完成签到 ,获得积分10
23秒前
科研通AI2S应助wenjian采纳,获得10
23秒前
鲁滨逊完成签到 ,获得积分10
23秒前
QYW发布了新的文献求助10
25秒前
哈儿的跟班完成签到,获得积分10
26秒前
世佳何发布了新的文献求助30
27秒前
邱曾烨完成签到,获得积分20
27秒前
暴躁的凝云完成签到,获得积分20
28秒前
心宽好运自然来完成签到,获得积分10
29秒前
陶火桃完成签到,获得积分10
30秒前
共享精神应助科研通管家采纳,获得10
32秒前
英姑应助科研通管家采纳,获得10
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
今后应助科研通管家采纳,获得10
32秒前
在水一方应助科研通管家采纳,获得20
32秒前
Yziii应助科研通管家采纳,获得20
33秒前
我不是BOB应助科研通管家采纳,获得30
33秒前
科目三应助科研通管家采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023