Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms

医学 乳腺摄影术 乳腺癌 置信区间 恶性肿瘤 接收机工作特性 双雷达 乳房成像 健康档案 回顾性队列研究 放射科 试验装置 机器学习 人工智能 内科学 妇科 癌症 乳腺癌筛查 医疗保健 计算机科学 经济 经济增长
作者
Ayelet Akselrod-Ballin,Michal Chorev,Yoel Shoshan,Adam Spiro,Alon Hazan,Roie Melamed,Ella Barkan,Esma Herzel,Shaked Naor,Ehud Karavani,Gideon Koren,Yaara Goldschmidt,Varda Shalev,Michal Rosen-Zvi,Michal Guindy
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (2): 331-342 被引量:139
标识
DOI:10.1148/radiol.2019182622
摘要

Background Computational models on the basis of deep neural networks are increasingly used to analyze health care data. However, the efficacy of traditional computational models in radiology is a matter of debate. Purpose To evaluate the accuracy and efficiency of a combined machine and deep learning approach for early breast cancer detection applied to a linked set of digital mammography images and electronic health records. Materials and Methods In this retrospective study, 52 936 images were collected in 13 234 women who underwent at least one mammogram between 2013 and 2017, and who had health records for at least 1 year before undergoing mammography. The algorithm was trained on 9611 mammograms and health records of women to make two breast cancer predictions: to predict biopsy malignancy and to differentiate normal from abnormal screening examinations. The study estimated the association of features with outcomes by using t test and Fisher exact test. The model comparisons were performed with a 95% confidence interval (CI) or by using the DeLong test. Results The resulting algorithm was validated in 1055 women and tested in 2548 women (mean age, 55 years ± 10 [standard deviation]). In the test set, the algorithm identified 34 of 71 (48%) false-negative findings on mammograms. For the malignancy prediction objective, the algorithm obtained an area under the receiver operating characteristic curve (AUC) of 0.91 (95% CI: 0.89, 0.93), with specificity of 77.3% (95% CI: 69.2%, 85.4%) at a sensitivity of 87%. When trained on clinical data alone, the model performed significantly better than the Gail model (AUC, 0.78 vs 0.54, respectively; P < .004). Conclusion The algorithm, which combined machine-learning and deep-learning approaches, can be applied to assess breast cancer at a level comparable to radiologists and has the potential to substantially reduce missed diagnoses of breast cancer. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
111one给111one的求助进行了留言
1秒前
高高雪瑶完成签到,获得积分10
2秒前
3秒前
吴迪完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
Sebastian发布了新的文献求助10
4秒前
顾矜应助最短的咒采纳,获得10
4秒前
4秒前
idiom完成签到,获得积分10
7秒前
默默发布了新的文献求助10
7秒前
7秒前
领导范儿应助账号本人采纳,获得10
7秒前
7秒前
8秒前
8秒前
lilili完成签到,获得积分10
8秒前
9秒前
NexusExplorer应助董晴采纳,获得10
11秒前
豆子完成签到 ,获得积分20
11秒前
七月流火应助zxcvbnm采纳,获得100
11秒前
默默完成签到,获得积分10
11秒前
完美世界应助xxx采纳,获得10
11秒前
希望天下0贩的0应助周易采纳,获得10
12秒前
健壮忆霜发布了新的文献求助10
12秒前
12秒前
彭于晏应助木染采纳,获得30
13秒前
风笛发布了新的文献求助10
13秒前
14秒前
弥漫发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
16秒前
Azhhhi完成签到,获得积分20
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898203
求助须知:如何正确求助?哪些是违规求助? 4179039
关于积分的说明 12973629
捐赠科研通 3942934
什么是DOI,文献DOI怎么找? 2162973
邀请新用户注册赠送积分活动 1181522
关于科研通互助平台的介绍 1086962