亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms

医学 乳腺摄影术 乳腺癌 置信区间 恶性肿瘤 接收机工作特性 双雷达 乳房成像 健康档案 回顾性队列研究 放射科 试验装置 机器学习 人工智能 内科学 妇科 癌症 乳腺癌筛查 医疗保健 计算机科学 经济 经济增长
作者
Ayelet Akselrod-Ballin,Michal Chorev,Yoel Shoshan,Adam Spiro,Alon Hazan,Roie Melamed,Ella Barkan,Esma Herzel,Shaked Naor,Ehud Karavani,Gideon Koren,Yaara Goldschmidt,Varda Shalev,Michal Rosen-Zvi,Michal Guindy
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (2): 331-342 被引量:139
标识
DOI:10.1148/radiol.2019182622
摘要

Background Computational models on the basis of deep neural networks are increasingly used to analyze health care data. However, the efficacy of traditional computational models in radiology is a matter of debate. Purpose To evaluate the accuracy and efficiency of a combined machine and deep learning approach for early breast cancer detection applied to a linked set of digital mammography images and electronic health records. Materials and Methods In this retrospective study, 52 936 images were collected in 13 234 women who underwent at least one mammogram between 2013 and 2017, and who had health records for at least 1 year before undergoing mammography. The algorithm was trained on 9611 mammograms and health records of women to make two breast cancer predictions: to predict biopsy malignancy and to differentiate normal from abnormal screening examinations. The study estimated the association of features with outcomes by using t test and Fisher exact test. The model comparisons were performed with a 95% confidence interval (CI) or by using the DeLong test. Results The resulting algorithm was validated in 1055 women and tested in 2548 women (mean age, 55 years ± 10 [standard deviation]). In the test set, the algorithm identified 34 of 71 (48%) false-negative findings on mammograms. For the malignancy prediction objective, the algorithm obtained an area under the receiver operating characteristic curve (AUC) of 0.91 (95% CI: 0.89, 0.93), with specificity of 77.3% (95% CI: 69.2%, 85.4%) at a sensitivity of 87%. When trained on clinical data alone, the model performed significantly better than the Gail model (AUC, 0.78 vs 0.54, respectively; P < .004). Conclusion The algorithm, which combined machine-learning and deep-learning approaches, can be applied to assess breast cancer at a level comparable to radiologists and has the potential to substantially reduce missed diagnoses of breast cancer. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oscar完成签到,获得积分10
2秒前
5秒前
可爱的西兰花完成签到 ,获得积分20
10秒前
苹果南莲发布了新的文献求助10
11秒前
ding应助YF采纳,获得20
12秒前
xiongyh10完成签到,获得积分0
15秒前
Hello应助兴奋秋珊采纳,获得10
15秒前
22秒前
puuuunido完成签到 ,获得积分10
23秒前
24秒前
HalloYa完成签到 ,获得积分10
26秒前
Owen应助兴奋秋珊采纳,获得10
26秒前
WXKennyS发布了新的文献求助10
28秒前
zzzpf发布了新的文献求助10
31秒前
YF完成签到,获得积分10
32秒前
思源应助不安跳跳糖采纳,获得10
38秒前
zzzpf完成签到,获得积分10
42秒前
kei发布了新的文献求助30
43秒前
47秒前
sissie发布了新的文献求助10
57秒前
58秒前
充电宝应助兴奋秋珊采纳,获得10
1分钟前
mumu完成签到,获得积分10
1分钟前
apckkk完成签到 ,获得积分10
1分钟前
Ava应助兴奋秋珊采纳,获得10
1分钟前
Jiayi完成签到 ,获得积分10
1分钟前
1分钟前
茜茜发布了新的文献求助10
1分钟前
cxxxxx完成签到,获得积分10
1分钟前
sissie完成签到,获得积分10
1分钟前
Hello应助兴奋秋珊采纳,获得10
1分钟前
yzy完成签到 ,获得积分10
1分钟前
yzy关注了科研通微信公众号
1分钟前
深情安青应助兴奋秋珊采纳,获得10
1分钟前
莉莉斯完成签到 ,获得积分10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助AH采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356647
求助须知:如何正确求助?哪些是违规求助? 4488367
关于积分的说明 13972076
捐赠科研通 4389319
什么是DOI,文献DOI怎么找? 2411489
邀请新用户注册赠送积分活动 1404019
关于科研通互助平台的介绍 1377978