异质结
电子转移
煅烧
催化作用
氧化还原
石墨氮化碳
材料科学
光催化
X射线光电子能谱
二苯并噻吩
烟气脱硫
化学工程
纳米复合材料
金属
光化学
过渡金属
化学
纳米技术
有机化学
光电子学
冶金
工程类
作者
Kun Chen,Xiaomin Zhang,Xianfeng Yang,Menggai Jiao,Zhen Zhou,Minghui Zhang,Danhong Wang,Xian‐He Bu
标识
DOI:10.1016/j.apcatb.2018.07.037
摘要
Electronic structure of active sites plays a crucial role in redox catalysts. Herein, graphitic carbon nitride (g-C3N4) decorated with metallic MoO2 heterojunction nanocomposites were successfully synthesized through a facile calcination route. XPS, UPS, UV–vis and PL spectra results suggest electron transfer from the conduction band (CB) of g-C3N4 to unfilled π* band of metallic MoO2 in the metal-semiconductor heterojunction. The electron transfer ensures high intrinsic oxidative desulfurization activity for MoO2/g-C3N4 composites. Radical scavenger experiments indicate that the electron transfer facilitates the enrichment of electron density around Mo active sites and control the rate-determining step of oxidative desulfurization. The approach can be extended to other low valent transition metal oxides possessing d electrons for enhanced catalytic activity in redox reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI