Designing leaf marginal shapes: Regulatory mechanisms of leaf serration or dissection

锯齿状 解剖(医学) 生物 植物 计算生物学 解剖
作者
Jin‐Xiu Ke,Duo Chen,Yan‐Ping Guo
出处
期刊:Shengwu duoyangxing [Biodiversity Science]
卷期号:26 (9): 988-997 被引量:4
标识
DOI:10.17520/biods.2018127
摘要

The mechanism of formation and evolution of phenotypic diversity is one of the key problems in biodiversity science because phenotype diversity is not only a marker of species diversity, but carries the designs adjusted to environments.Plant leaves exhibit a great deal of morphological variation.Such variation is attributed largely to changes of leaf marginal architecture.Leaf marginal shapes can be described as entire, serrate, lobed (varying in depth and patterns) and dissected (also referred to as compound leaf).The molecular mechanism controlling the development of leaf marginal shape has been intensively studied in Arabidopsis thaliana, Cardamine hirsuta, Solanum lycopersicum, and some other plants.Many important regulatory factors such as transcription factors, small RNAs and plant hormones have been found involved in the development of leaf serration or dissection.Among those factors, the transcription factor NAM/CUC, miR164 and auxin in the auxin efflux module play a central role through a feedback loop, and this regulatory module appears to be conserved across the eudicots; the transcription factors TCPs, SPLs and some other miRNAs also take part in the auxin efflux pathway.Transcription factors of the KNOX family play roles in the development of leaf lobes as well although most of the researches about KNOX genes have focused on their regulation of the morphogenesis of compound leaves.In addition, studies in Arabidopsis, Cardamine and other taxa of the Brassicaceae have shown that the gene RCO promotes the development of leaf dissection by repressing growth at the flanks of protrusions generated by CUC-auxin patterning.The present paper reviews the recent progress and integrate the major results of researches about the molecular mechanisms •综述•

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啾啾发布了新的文献求助10
1秒前
危机的蜜蜂完成签到,获得积分10
1秒前
郑仕完成签到,获得积分10
2秒前
早日毕业发布了新的文献求助30
2秒前
3秒前
36456657应助ZHAO采纳,获得10
3秒前
njc大魔王发布了新的文献求助10
3秒前
3秒前
谢安发布了新的文献求助10
3秒前
3秒前
SYLH应助淳之风采纳,获得10
3秒前
清风应助舒心雅柔采纳,获得10
4秒前
大模型应助小曾采纳,获得10
4秒前
丽颖完成签到,获得积分20
5秒前
哈哈王子完成签到,获得积分10
5秒前
Wangnono发布了新的文献求助10
5秒前
梅子发布了新的文献求助10
5秒前
5秒前
科研通AI5应助bao采纳,获得10
6秒前
6秒前
zxcv23完成签到,获得积分10
7秒前
轻松水蓝完成签到,获得积分10
7秒前
7秒前
cathylll完成签到,获得积分10
8秒前
8秒前
丽颖发布了新的文献求助10
8秒前
刀123完成签到,获得积分10
8秒前
9秒前
Whassupww发布了新的文献求助10
9秒前
孙笑川258完成签到,获得积分10
9秒前
36456657应助小凡ai小占采纳,获得10
9秒前
001完成签到,获得积分10
10秒前
Akim应助孟雪采纳,获得10
10秒前
orixero应助xin采纳,获得10
10秒前
zhoujiayi完成签到,获得积分10
10秒前
yu完成签到,获得积分10
11秒前
梧桐发布了新的文献求助10
11秒前
11秒前
科研小能手完成签到 ,获得积分10
11秒前
fffzy完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540108
求助须知:如何正确求助?哪些是违规求助? 3117659
关于积分的说明 9331633
捐赠科研通 2815308
什么是DOI,文献DOI怎么找? 1547522
邀请新用户注册赠送积分活动 721033
科研通“疑难数据库(出版商)”最低求助积分说明 712411