Designing leaf marginal shapes: Regulatory mechanisms of leaf serration or dissection

锯齿状 解剖(医学) 生物 植物 计算生物学 解剖
作者
Jin‐Xiu Ke,Duo Chen,Yan‐Ping Guo
出处
期刊:Shengwu duoyangxing [Biodiversity Science]
卷期号:26 (9): 988-997 被引量:4
标识
DOI:10.17520/biods.2018127
摘要

The mechanism of formation and evolution of phenotypic diversity is one of the key problems in biodiversity science because phenotype diversity is not only a marker of species diversity, but carries the designs adjusted to environments.Plant leaves exhibit a great deal of morphological variation.Such variation is attributed largely to changes of leaf marginal architecture.Leaf marginal shapes can be described as entire, serrate, lobed (varying in depth and patterns) and dissected (also referred to as compound leaf).The molecular mechanism controlling the development of leaf marginal shape has been intensively studied in Arabidopsis thaliana, Cardamine hirsuta, Solanum lycopersicum, and some other plants.Many important regulatory factors such as transcription factors, small RNAs and plant hormones have been found involved in the development of leaf serration or dissection.Among those factors, the transcription factor NAM/CUC, miR164 and auxin in the auxin efflux module play a central role through a feedback loop, and this regulatory module appears to be conserved across the eudicots; the transcription factors TCPs, SPLs and some other miRNAs also take part in the auxin efflux pathway.Transcription factors of the KNOX family play roles in the development of leaf lobes as well although most of the researches about KNOX genes have focused on their regulation of the morphogenesis of compound leaves.In addition, studies in Arabidopsis, Cardamine and other taxa of the Brassicaceae have shown that the gene RCO promotes the development of leaf dissection by repressing growth at the flanks of protrusions generated by CUC-auxin patterning.The present paper reviews the recent progress and integrate the major results of researches about the molecular mechanisms •综述•

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心如冬完成签到,获得积分10
1秒前
桑葚完成签到,获得积分10
1秒前
ZYC007完成签到,获得积分10
1秒前
1秒前
Emily完成签到,获得积分10
2秒前
慕青应助xy采纳,获得10
2秒前
英俊的铭应助dahuihui采纳,获得10
2秒前
顺心紫南完成签到,获得积分10
2秒前
menghongmei发布了新的文献求助10
3秒前
偷乐发布了新的文献求助10
3秒前
李健应助无语的笑珊采纳,获得10
3秒前
3秒前
有机分子笼完成签到,获得积分10
4秒前
77777发布了新的文献求助10
4秒前
yjzzz完成签到,获得积分10
4秒前
fly完成签到,获得积分10
4秒前
大模型应助Dearjw1655采纳,获得10
5秒前
5秒前
5秒前
yueyue完成签到,获得积分10
5秒前
莫西莫西发布了新的文献求助10
5秒前
6秒前
ColinWine完成签到,获得积分10
6秒前
7秒前
7秒前
Rony发布了新的文献求助10
8秒前
无花果应助eves采纳,获得10
8秒前
正反馈发布了新的文献求助10
8秒前
zjiang完成签到 ,获得积分10
8秒前
regina完成签到,获得积分10
9秒前
科研通AI2S应助数学情缘采纳,获得10
9秒前
科研通AI2S应助活泼身影采纳,获得10
9秒前
小甑发布了新的文献求助10
10秒前
kx完成签到,获得积分10
10秒前
1111完成签到,获得积分20
10秒前
eksue111发布了新的文献求助10
10秒前
swallow发布了新的文献求助10
10秒前
11秒前
斜玉发布了新的文献求助30
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582