Breast Cancer Diagnosis from Perspective of Class Imbalance

透视图(图形) 班级(哲学) 乳腺癌 癌症 医学 肿瘤科 内科学 计算机科学 人工智能
作者
Jue Zhang,Li Chen
出处
期刊:DOAJ: Directory of Open Access Journals - DOAJ 被引量:1
标识
DOI:10.22038/ijmp.2018.31600.1373
摘要

Introduction: Breast cancer is the second cause of mortality among women. Early detection is the only rescue to reduce the risk of breast cancer mortality. Traditional methods cannot effectively diagnose tumor since they are based on the assumption of well-balanced dataset.. However, a hybrid method can help to alleviate the two-class imbalance problem existing in the diagnosis of breast cancer and establish a more accurate diagnosis. Material and Methods: The proposed hybrid approach was based on improved Laplacian score (LS) andK-nearest neighbor (KNN) algorithms called LS-KNN. An improved LS algorithm was used for obtaining the optimal feature subset. The KNN with automatic K was utilized for classifying the data which guaranteed the effectiveness of the proposed method by reducing the computational effort and making the classification more faster. The effectiveness of LS-KNN was also examined on two biased-representative breast cancer datasets using classification accuracy, sensitivity, specificity, G-mean, and Matthews correlation coefficient. Results: Applying the proposed algorithm on two breast cancer datasets indicated that the efficiency of the new method was higher than the previously introduced methods. The obtained values of accuracy, sensitivity, specificity, G-mean, and Matthews correlation coefficient were 99.27%, 99.12%, 99.51%, 99.42%, respectively. Conclusion: Experimental results showed that the proposed approach worked well with breast cancer datasets and could be a good alternative to the well-known machine learning methods

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Heavenfalling发布了新的文献求助10
2秒前
Owen应助LDX采纳,获得20
3秒前
3秒前
4秒前
zhongu应助wyuxiaocheng采纳,获得10
5秒前
唐可可发布了新的文献求助10
7秒前
8秒前
圈圈完成签到 ,获得积分10
9秒前
SciGPT应助微风采纳,获得10
9秒前
orixero应助失眠的数据线采纳,获得10
10秒前
在水一方应助能量球采纳,获得10
10秒前
13秒前
华仔应助123采纳,获得10
13秒前
13秒前
14秒前
14秒前
小郭不洗锅完成签到,获得积分10
15秒前
ori完成签到,获得积分10
15秒前
16秒前
陌子完成签到 ,获得积分10
16秒前
17秒前
1325850238发布了新的文献求助10
18秒前
Owen应助橙子采纳,获得10
19秒前
JamesPei应助沙脑采纳,获得10
19秒前
Richard发布了新的文献求助10
20秒前
20秒前
jonghuang发布了新的文献求助10
21秒前
sssucker发布了新的文献求助10
22秒前
22秒前
新八完成签到,获得积分10
23秒前
小张应助激动的傲芙采纳,获得30
23秒前
24秒前
LDX完成签到,获得积分10
24秒前
现代剑成发布了新的文献求助10
24秒前
YR完成签到 ,获得积分10
25秒前
KeYang完成签到,获得积分10
25秒前
彩色德天完成签到 ,获得积分10
26秒前
酷波er应助osolemioo采纳,获得10
27秒前
妮0001发布了新的文献求助10
27秒前
28秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462807
求助须知:如何正确求助?哪些是违规求助? 3056372
关于积分的说明 9051665
捐赠科研通 2746018
什么是DOI,文献DOI怎么找? 1506751
科研通“疑难数据库(出版商)”最低求助积分说明 696202
邀请新用户注册赠送积分活动 695740