化学
质谱法
脂类学
二酰甘油激酶
分子
色谱法
分辨率(逻辑)
离子迁移光谱法
双键
结构异构体
立体化学
有机化学
生物化学
酶
人工智能
蛋白激酶C
计算机科学
作者
Kévin Jeanne Dit Fouque,César E. Ramírez,Russell L. Lewis,Jeremy P. Koelmel,Timothy J. Garrett,Richard A. Yost,Francisco Fernández-Lima
标识
DOI:10.1021/acs.analchem.8b04979
摘要
Lipids are a major class of molecules that play key roles in different biological processes. Understanding their biological roles and mechanisms remains analytically challenging due to their high isomeric content (e.g., varying acyl chain positions and/or double bond locations/geometries) in eukaryotic cells. In the present work, a combination of liquid chromatography (LC) followed by high resolution trapped ion mobility spectrometry–mass spectrometry (TIMS-MS) was used to investigate common isomeric glycerophosphocholine (PC) and diacylglycerol (DG) lipid species from human plasma. The LC dimension was effective for the separation of isomeric lipid species presenting distinct double bond locations or geometries but was not able to differentiate lipid isomers with distinct acyl chain positions. High resolution TIMS-MS resulted in the identification of lipid isomers that differ in the double bond locations/geometries as well as in the position of the acyl chain with resolving power (R) up to ∼410 (R ∼ 320 needed on average). Extremely small structural differences exhibiting collision cross sections (CCS) of less than 1% (down to 0.2%) are sufficient for the discrimination of the isomeric lipid species using TIMS-MS. The same level of performance was maintained in the complex biological mixture for the biologically relevant PC 16:0/18:1 lipid isomers. These results suggest several advantages of using complementary LC-TIMS-MS separations for regular lipidomic analysis, with the main emphasis in the elucidation of isomer-specific lipid biological activities.
科研通智能强力驱动
Strongly Powered by AbleSci AI