A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma

四分位间距 支持向量机 列线图 医学 放射科 肝内胆管癌 人工智能 计算机科学 内科学
作者
Lei Xu,Pengfei Yang,Wenjie Liang,Weihai Liu,Weigen Wang,Chen Luo,Jing Wang,Zhangli Peng,Xing Li,Mingyan Huang,Shusen Zheng,Tianye Niu
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:9 (18): 5374-5385 被引量:83
标识
DOI:10.7150/thno.34149
摘要

Purpose: Accurate lymph node (LN) status evaluation for intrahepatic cholangiocarcinoma (ICC) patients is essential for surgical planning. This study aimed to develop and validate a prediction model for preoperative LN status evaluation in ICC patients. Methods and Materials: A group of 106 ICC patients, who were diagnosed between April 2011 and February 2016, was used for prediction model training. Image features were extracted from T1-weighted contrast-enhanced MR images. A support vector machine (SVM) model was built by using the most LN status-related features, which were selected using the maximum relevance minimum redundancy (mRMR) algorithm. The mRMR method ranked each feature according to its relevance to the LN status and redundancy with other features. An SVM score was calculated for each patient to reflect the LN metastasis (LNM) probability from the SVM model. Finally, a combination nomogram was constructed by incorporating the SVM score and clinical features. An independent group of 42 patients who were diagnosed from March 2016 to November 2017 was used to validate the prediction models. The model performances were evaluated on discrimination, calibration, and clinical utility. Results: The SVM model was constructed based on five selected image features. Significant differences were found between patients with LNM and non-LNM in SVM scores in both groups (the training group: 0.5466 (interquartile range (IQR), 0.4059-0.6985) vs. 0.3226 (IQR, 0.0527-0.4659), P<0.0001; the validation group: 0.5831 (IQR, 0.3641-0.8162) vs. 0.3101 (IQR, 0.1029-0.4661), P=0.0015). The combination nomogram based on the SVM score, the CA 19-9 level, and the MR-reported LNM factor showed better discrimination in separating patients with LNM and non-LNM, comparing to the SVM model alone (AUC: the training group: 0.842 vs. 0.788; the validation group: 0.870 vs. 0.787). Favorable clinical utility was observed using the decision curve analysis for the nomogram. Conclusion: The nomogram, incorporating the SVM score, CA 19-9 level and the MR-reported LNM factor, provided an individualized LN status evaluation and helped clinicians guide the surgical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘络发布了新的文献求助10
1秒前
追梦发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
HEIKU应助啊怪采纳,获得10
3秒前
ceeray23应助啊怪采纳,获得10
3秒前
lanyun发布了新的文献求助10
3秒前
打打应助林菲菲采纳,获得10
5秒前
玖月发布了新的文献求助10
5秒前
迪迦发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
xinchi发布了新的文献求助10
8秒前
追梦完成签到,获得积分10
8秒前
9秒前
pharrah应助may采纳,获得10
10秒前
小马甲应助xmhxpz采纳,获得10
10秒前
12秒前
李爱国应助乐乐乐乐乐乐采纳,获得30
12秒前
lanyun完成签到,获得积分10
12秒前
m123发布了新的文献求助10
13秒前
111发布了新的文献求助10
14秒前
sandra发布了新的文献求助10
15秒前
li发布了新的文献求助10
15秒前
leowu应助fighting采纳,获得10
16秒前
16秒前
16秒前
16秒前
19秒前
miketyson完成签到,获得积分10
20秒前
20秒前
小蘑菇应助m123采纳,获得10
22秒前
23秒前
henryhc_完成签到 ,获得积分10
24秒前
24秒前
tsw发布了新的文献求助10
24秒前
顾矜应助刘璇1采纳,获得10
26秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589