亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning and process understanding for data-driven Earth system science

地理空间分析 地球系统科学 人工智能 背景(考古学) 机器学习 计算机科学 深度学习 航程(航空) 数据科学 过程(计算) 生态学 工程类 地理 生物 操作系统 地图学 航空航天工程 考古
作者
Markus Reichstein,Gustau Camps‐Valls,Björn Stevens,Martin Jung,Joachim Denzler,Nuno Carvalhais,Prabhat
出处
期刊:Nature [Springer Nature]
卷期号:566 (7743): 195-204 被引量:3457
标识
DOI:10.1038/s41586-019-0912-1
摘要

Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybrid modelling approach, coupling physical process models with the versatility of data-driven machine learning. Complex Earth system challenges can be addressed by incorporating spatial and temporal context into machine learning, especially via deep learning, and further by combining with physical models into hybrid models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研小白采纳,获得10
9秒前
wlei完成签到,获得积分10
9秒前
顾矜应助努力科研采纳,获得10
10秒前
11秒前
SHIROKO完成签到,获得积分10
16秒前
Milesgao发布了新的文献求助20
26秒前
32秒前
miracle1005发布了新的文献求助10
36秒前
科研小白发布了新的文献求助10
37秒前
大模型应助九黎采纳,获得10
43秒前
点点zzz发布了新的文献求助30
46秒前
坦率的丹烟完成签到 ,获得积分10
46秒前
hesurina完成签到,获得积分10
50秒前
复杂的泥猴桃完成签到,获得积分10
50秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
Ava应助点点zzz采纳,获得10
54秒前
科研通AI5应助科研小白采纳,获得10
56秒前
1分钟前
1分钟前
1分钟前
九黎发布了新的文献求助10
1分钟前
Akim应助yyyy采纳,获得10
1分钟前
webmaster完成签到,获得积分10
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
噔噔完成签到,获得积分10
1分钟前
大英留子千早爱音完成签到,获得积分10
1分钟前
1分钟前
慕青应助科研小白采纳,获得10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
愉快凡旋发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
叶123完成签到,获得积分10
2分钟前
爱撒娇的无施完成签到,获得积分10
2分钟前
努力科研完成签到,获得积分10
2分钟前
Alex发布了新的文献求助30
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135509
关于积分的说明 9412416
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716865