亮丙瑞林
化学
酰化
高效液相色谱法
色谱法
PLGA公司
生物化学
受体
催化作用
体外
布塞林
兴奋剂
作者
Ningzi Guo,Qi Zhang,Yue Sun,Huaxin Yang
标识
DOI:10.1016/j.ijpharm.2019.01.061
摘要
Studies have shown that the N-terminus and lysine side residue of peptides are prone to acylation in poly(d,l-lactide-co-glycolide) (PLGA) microspheres. Peptides such as leuprorelin lack a free N-terminus or lysine and only contain serine, arginine, and tyrosine as nucleophilic residues. The purpose of this study was to detect potential acylation impurities and determine their corresponding acylation sites in commercial leuprorelin-loaded PLGA microspheres. Commercial samples from three vendors were selected as targets for our study. The high-performance liquid chromatography (HPLC) conditions of the European Pharmacopoeia were used to separate and collect impurities. HPLC-tandem mass spectrometry (HPLC-MS/MS) was applied to confirm both the structure and acylation sites of the impurities. Our study demonstrated that impurities originating from both degradation of microspheres and synthesis of leuprorelin were well separated and identified using these HPLC conditions. HPLC-MS/MS analysis of acylated leuprorelin showed that diglycoyl, lactoyl-glycoyl, dilactoyl, and monolactoyl groups were conjugated to serine in leuprorelin-loaded PLGA microspheres. This is the first report showing serine to be the acylation site in peptide-loaded PLGA microspheres. Separation and identification of acylated leuprorelin derivatives will assist in minimising acylation and guiding the development of quality control for commercial leuprorelin-loaded PLGA microspheres.
科研通智能强力驱动
Strongly Powered by AbleSci AI