已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Traffic speed prediction for urban transportation network: A path based deep learning approach

可解释性 计算机科学 水准点(测量) 背景(考古学) 深度学习 人工智能 智能交通系统 特征(语言学) 流量(计算机网络) 交通生成模型 数据挖掘 人工神经网络 路径(计算) 运输工程 机器学习 实时计算 工程类 古生物学 哲学 程序设计语言 地理 生物 语言学 计算机安全 大地测量学
作者
Jiawei Wang,Ruixiang Chen,Zhaocheng He
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:100: 372-385 被引量:158
标识
DOI:10.1016/j.trc.2019.02.002
摘要

Traffic prediction, as an important part of intelligent transportation systems, plays a critical role in traffic state monitoring. While many studies accomplished traffic forecasting task with deep learning models, there is still an open issue of exploiting spatial-temporal traffic state features for better prediction performance, and the model interpretability has not been taken serious. In this study, we propose a path based deep learning framework which can produce better traffic speed prediction at a city wide scale, furthermore, the model is both rational and interpretable in the context of urban transportation. Specifically, we divide the road network into critical paths, which is helpful to mine the traffic flow mechanism. Then, each critical path is modeled through the bidirectional long short-term memory neural network (Bi-LSTM NN), and multiple Bi-LSTM layers are stacked to incorporate temporal information. At the stage of traffic prediction, the spatial-temporal features captured from these processes are fed into a fully-connected layer. Finally, results for each path are ensembled for network-wise traffic speed prediction. In the empirical studies, we compare the proposed model with multiple benchmark methods. Under a series of prediction scenarios (i.e., different input and prediction horizons), the superior performance of the proposed framework is validated. Moreover, by analyzing feature from hidden-layer output, the study explains the physical meaning of the hidden feature and illustrate model's interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
情怀应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
pual应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
qiuqiu应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
RRReol发布了新的文献求助10
5秒前
shuhaha完成签到,获得积分10
6秒前
Willow完成签到,获得积分10
8秒前
霸气灵松完成签到 ,获得积分10
10秒前
10秒前
Bob发布了新的文献求助10
14秒前
qi完成签到 ,获得积分10
15秒前
17秒前
ymr完成签到 ,获得积分10
19秒前
怕黑的白玉完成签到 ,获得积分10
20秒前
在水一方应助邱乐乐采纳,获得10
20秒前
20秒前
20秒前
Ava应助Rafayel采纳,获得10
20秒前
浮游应助王佳俊采纳,获得10
20秒前
23秒前
zh完成签到,获得积分10
26秒前
爱听歌电灯胆完成签到 ,获得积分10
30秒前
sun完成签到 ,获得积分10
33秒前
王佳俊完成签到,获得积分10
36秒前
37秒前
孙泽一发布了新的文献求助10
40秒前
46秒前
CNC完成签到 ,获得积分10
48秒前
49秒前
cc与车夫发布了新的文献求助10
51秒前
52秒前
oaix完成签到 ,获得积分10
53秒前
ldkshifo完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498024
求助须知:如何正确求助?哪些是违规求助? 4595410
关于积分的说明 14449038
捐赠科研通 4528074
什么是DOI,文献DOI怎么找? 2481355
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438271