Traffic speed prediction for urban transportation network: A path based deep learning approach

可解释性 计算机科学 水准点(测量) 背景(考古学) 深度学习 人工智能 智能交通系统 特征(语言学) 流量(计算机网络) 交通生成模型 数据挖掘 人工神经网络 路径(计算) 运输工程 机器学习 实时计算 工程类 古生物学 哲学 程序设计语言 地理 生物 语言学 计算机安全 大地测量学
作者
Jiawei Wang,Ruixiang Chen,Zhaocheng He
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:100: 372-385 被引量:158
标识
DOI:10.1016/j.trc.2019.02.002
摘要

Traffic prediction, as an important part of intelligent transportation systems, plays a critical role in traffic state monitoring. While many studies accomplished traffic forecasting task with deep learning models, there is still an open issue of exploiting spatial-temporal traffic state features for better prediction performance, and the model interpretability has not been taken serious. In this study, we propose a path based deep learning framework which can produce better traffic speed prediction at a city wide scale, furthermore, the model is both rational and interpretable in the context of urban transportation. Specifically, we divide the road network into critical paths, which is helpful to mine the traffic flow mechanism. Then, each critical path is modeled through the bidirectional long short-term memory neural network (Bi-LSTM NN), and multiple Bi-LSTM layers are stacked to incorporate temporal information. At the stage of traffic prediction, the spatial-temporal features captured from these processes are fed into a fully-connected layer. Finally, results for each path are ensembled for network-wise traffic speed prediction. In the empirical studies, we compare the proposed model with multiple benchmark methods. Under a series of prediction scenarios (i.e., different input and prediction horizons), the superior performance of the proposed framework is validated. Moreover, by analyzing feature from hidden-layer output, the study explains the physical meaning of the hidden feature and illustrate model's interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助高大的万恶采纳,获得10
1秒前
3秒前
3秒前
zzz发布了新的文献求助10
3秒前
4秒前
祖乐松完成签到,获得积分10
4秒前
青青儿发布了新的文献求助10
4秒前
taiyan完成签到,获得积分10
5秒前
李健的粉丝团团长应助TNU采纳,获得10
5秒前
海风吹过小镇完成签到 ,获得积分10
5秒前
十津川哈哈哈完成签到,获得积分10
5秒前
wanci应助神外魔法师采纳,获得30
6秒前
苍蓝所栖发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
感动又晴发布了新的文献求助10
8秒前
安详晓亦发布了新的文献求助10
8秒前
司徒绮发布了新的文献求助10
8秒前
8秒前
YK完成签到,获得积分10
9秒前
Gauss应助科研通管家采纳,获得20
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
Xinxxx应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
Xinxxx应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
大快朵颐发福完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
只争朝夕应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265