Traffic speed prediction for urban transportation network: A path based deep learning approach

可解释性 计算机科学 水准点(测量) 背景(考古学) 深度学习 人工智能 智能交通系统 特征(语言学) 流量(计算机网络) 交通生成模型 数据挖掘 人工神经网络 路径(计算) 运输工程 机器学习 实时计算 工程类 古生物学 哲学 程序设计语言 地理 生物 语言学 计算机安全 大地测量学
作者
Jiawei Wang,Ruixiang Chen,Zhaocheng He
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:100: 372-385 被引量:158
标识
DOI:10.1016/j.trc.2019.02.002
摘要

Traffic prediction, as an important part of intelligent transportation systems, plays a critical role in traffic state monitoring. While many studies accomplished traffic forecasting task with deep learning models, there is still an open issue of exploiting spatial-temporal traffic state features for better prediction performance, and the model interpretability has not been taken serious. In this study, we propose a path based deep learning framework which can produce better traffic speed prediction at a city wide scale, furthermore, the model is both rational and interpretable in the context of urban transportation. Specifically, we divide the road network into critical paths, which is helpful to mine the traffic flow mechanism. Then, each critical path is modeled through the bidirectional long short-term memory neural network (Bi-LSTM NN), and multiple Bi-LSTM layers are stacked to incorporate temporal information. At the stage of traffic prediction, the spatial-temporal features captured from these processes are fed into a fully-connected layer. Finally, results for each path are ensembled for network-wise traffic speed prediction. In the empirical studies, we compare the proposed model with multiple benchmark methods. Under a series of prediction scenarios (i.e., different input and prediction horizons), the superior performance of the proposed framework is validated. Moreover, by analyzing feature from hidden-layer output, the study explains the physical meaning of the hidden feature and illustrate model's interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助上善若水采纳,获得10
2秒前
青橙子发布了新的文献求助10
4秒前
4秒前
7秒前
灌汤大笼包完成签到,获得积分10
8秒前
wkx发布了新的文献求助20
8秒前
9秒前
10秒前
10秒前
梨子发布了新的文献求助20
10秒前
墨酒子完成签到,获得积分10
12秒前
沉静电灯胆完成签到,获得积分20
12秒前
童diedie完成签到,获得积分10
12秒前
萨沙小土豆完成签到,获得积分20
13秒前
会飞的木鱼完成签到,获得积分10
13秒前
Atopos发布了新的文献求助10
14秒前
15秒前
16秒前
18秒前
19秒前
哦哦哦哦哦关注了科研通微信公众号
21秒前
21秒前
kanglan完成签到,获得积分10
22秒前
CodeCraft应助aliu采纳,获得30
22秒前
安琦发布了新的文献求助10
22秒前
60岁刚当博导完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
23秒前
24秒前
万能图书馆应助walawala采纳,获得10
24秒前
24秒前
丁智豪发布了新的文献求助10
25秒前
等天黑发布了新的文献求助10
25秒前
laurel发布了新的文献求助20
26秒前
11完成签到,获得积分10
26秒前
bodao发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536474
求助须知:如何正确求助?哪些是违规求助? 4624146
关于积分的说明 14590801
捐赠科研通 4564532
什么是DOI,文献DOI怎么找? 2501843
邀请新用户注册赠送积分活动 1480597
关于科研通互助平台的介绍 1451838