Traffic speed prediction for urban transportation network: A path based deep learning approach

可解释性 计算机科学 水准点(测量) 背景(考古学) 深度学习 人工智能 智能交通系统 特征(语言学) 流量(计算机网络) 交通生成模型 数据挖掘 人工神经网络 路径(计算) 运输工程 机器学习 实时计算 工程类 古生物学 哲学 程序设计语言 地理 生物 语言学 计算机安全 大地测量学
作者
Jiawei Wang,Ruixiang Chen,Zhaocheng He
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:100: 372-385 被引量:158
标识
DOI:10.1016/j.trc.2019.02.002
摘要

Traffic prediction, as an important part of intelligent transportation systems, plays a critical role in traffic state monitoring. While many studies accomplished traffic forecasting task with deep learning models, there is still an open issue of exploiting spatial-temporal traffic state features for better prediction performance, and the model interpretability has not been taken serious. In this study, we propose a path based deep learning framework which can produce better traffic speed prediction at a city wide scale, furthermore, the model is both rational and interpretable in the context of urban transportation. Specifically, we divide the road network into critical paths, which is helpful to mine the traffic flow mechanism. Then, each critical path is modeled through the bidirectional long short-term memory neural network (Bi-LSTM NN), and multiple Bi-LSTM layers are stacked to incorporate temporal information. At the stage of traffic prediction, the spatial-temporal features captured from these processes are fed into a fully-connected layer. Finally, results for each path are ensembled for network-wise traffic speed prediction. In the empirical studies, we compare the proposed model with multiple benchmark methods. Under a series of prediction scenarios (i.e., different input and prediction horizons), the superior performance of the proposed framework is validated. Moreover, by analyzing feature from hidden-layer output, the study explains the physical meaning of the hidden feature and illustrate model's interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪击的云应助zzww采纳,获得10
刚刚
kyy完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
panyubo发布了新的文献求助10
1秒前
xing发布了新的文献求助10
1秒前
sdhjad完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
ssy完成签到,获得积分10
2秒前
3秒前
3秒前
cxw发布了新的文献求助10
4秒前
mayun95发布了新的文献求助10
7秒前
So完成签到 ,获得积分10
7秒前
M旭旭发布了新的文献求助10
7秒前
王子姗完成签到,获得积分10
7秒前
田様应助fczx采纳,获得10
9秒前
123sly发布了新的文献求助30
10秒前
Akim应助QinQin采纳,获得10
11秒前
Herman完成签到 ,获得积分10
11秒前
Twonej给呢呢的求助进行了留言
11秒前
xing完成签到,获得积分10
12秒前
12秒前
CipherSage应助李卓航采纳,获得10
12秒前
12秒前
M旭旭完成签到,获得积分10
13秒前
科研通AI6应助于富强采纳,获得10
14秒前
Ganann完成签到 ,获得积分10
15秒前
vv完成签到 ,获得积分10
15秒前
有趣的银发布了新的文献求助10
15秒前
16秒前
17秒前
上官若男应助yun采纳,获得40
18秒前
21秒前
田様应助Cyuan采纳,获得10
21秒前
21秒前
123sly完成签到,获得积分10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716