Traffic speed prediction for urban transportation network: A path based deep learning approach

可解释性 计算机科学 水准点(测量) 背景(考古学) 深度学习 人工智能 智能交通系统 特征(语言学) 流量(计算机网络) 交通生成模型 数据挖掘 人工神经网络 路径(计算) 运输工程 机器学习 实时计算 工程类 古生物学 哲学 程序设计语言 地理 生物 语言学 计算机安全 大地测量学
作者
Jiawei Wang,Ruixiang Chen,Zhaocheng He
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:100: 372-385 被引量:158
标识
DOI:10.1016/j.trc.2019.02.002
摘要

Traffic prediction, as an important part of intelligent transportation systems, plays a critical role in traffic state monitoring. While many studies accomplished traffic forecasting task with deep learning models, there is still an open issue of exploiting spatial-temporal traffic state features for better prediction performance, and the model interpretability has not been taken serious. In this study, we propose a path based deep learning framework which can produce better traffic speed prediction at a city wide scale, furthermore, the model is both rational and interpretable in the context of urban transportation. Specifically, we divide the road network into critical paths, which is helpful to mine the traffic flow mechanism. Then, each critical path is modeled through the bidirectional long short-term memory neural network (Bi-LSTM NN), and multiple Bi-LSTM layers are stacked to incorporate temporal information. At the stage of traffic prediction, the spatial-temporal features captured from these processes are fed into a fully-connected layer. Finally, results for each path are ensembled for network-wise traffic speed prediction. In the empirical studies, we compare the proposed model with multiple benchmark methods. Under a series of prediction scenarios (i.e., different input and prediction horizons), the superior performance of the proposed framework is validated. Moreover, by analyzing feature from hidden-layer output, the study explains the physical meaning of the hidden feature and illustrate model's interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅沛文完成签到 ,获得积分10
1秒前
1秒前
2秒前
汉堡包应助banksy采纳,获得10
2秒前
3秒前
4秒前
完美世界应助L416采纳,获得10
4秒前
5秒前
123完成签到,获得积分10
5秒前
传奇3应助家伟采纳,获得10
5秒前
5秒前
Fanny完成签到,获得积分10
6秒前
陈词丶完成签到,获得积分10
6秒前
星辰大海应助无辜不言采纳,获得10
7秒前
小桃耶发布了新的文献求助10
7秒前
7秒前
斯文败类应助虚心的清采纳,获得10
7秒前
7秒前
林间发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
浮游应助0529采纳,获得10
10秒前
爆米花应助lina采纳,获得10
10秒前
NexusExplorer应助淡定的冰萍采纳,获得10
10秒前
10秒前
10秒前
充电宝应助凤凰山采纳,获得10
10秒前
11秒前
11秒前
酷波er应助六块六采纳,获得30
11秒前
11秒前
11秒前
苏梗完成签到 ,获得积分10
12秒前
12秒前
wjd完成签到 ,获得积分10
12秒前
淡然思山完成签到,获得积分10
12秒前
13秒前
shinnosuke应助我要读博士采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458