催化作用
热解
硫酸
核化学
生物量(生态学)
产量(工程)
木质纤维素生物量
乙酰丙酸
玉米芯
制浆造纸工业
原材料
作者
Yuyang Fan,Dongyan Zhang,Anqing Zheng,Zengli Zhao,Haibin Li,Tianhua Yang
标识
DOI:10.1016/j.cej.2018.10.014
摘要
Abstract The objective of this study was to selectively coproduce anhydrosugars and furfural from the fast pyrolysis of biomass by H2SO4 impregnation. The pyrolysis behaviors of raw and H2SO4-impregnated corncobs, cellulose and xylan were systematically studied by a thermogravimetric analyzer (TGA) and commercial pyroprobe reactor. The results demonstrate that H2SO4 impregnation can reduce the formation of char and drastically improve the yield of anhydrosugars and furfural. The maximum yields of levoglucosan (38.45 wt% based on cellulose), furfural (19.18 wt% based on hemicellulose) and xylosan (9.49 wt% based on hemicellulose) were obtained by fast pyrolysis of corncobs impregnated with 2.75 wt% H2SO4. By comparing the product distributions from fast pyrolysis of H2SO4-impregnated cellulose, xylan, and raw and demineralized corncobs, it is concluded that H2SO4 can act as an inhibitor to suppress the catalytic functions of structural alkali and alkaline earth metals (AAEM) to improve the yield of anhydrosugars, and H2SO4 can also act as a catalyst to accelerate the dehydration of hemicellulose to form more furfural. It is speculated that H2SO4 could first react with structural AAEM in lignin to form lignosulfonates (e.g., potassium lignosulfonate), thus reducing the catalytic functions of structural AAEM during fast pyrolysis of corncobs. These findings provide a simple and efficient method for the selective coproduction of anhydrosugars and furfural from waste biomass.
科研通智能强力驱动
Strongly Powered by AbleSci AI