已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Degradation mechanism of steel/CFRP plate interface subjected to overloading fatigue and wetting/drying cycles

润湿 降级(电信) 材料科学 复合材料 机制(生物学) 接口(物质) 工程类 坐滴法 哲学 认识论 电信
作者
Junhui Li,Yan Xie,Miaochang Zhu,Haifeng Xu,Jun Deng
出处
期刊:Thin-walled Structures [Elsevier]
卷期号:179: 109644-109644 被引量:11
标识
DOI:10.1016/j.tws.2022.109644
摘要

The bond strength of the interface between carbon fiber-reinforced polymer (CFRP) and steel is crucial for CFRP-reinforced steel structures. However, the influence of fatigue loading and the service environment on the bond durability of strengthened steel structures requires further investigation. This work focused on the bond degradation mechanism of the steel/CFRP interface subjected to overloading fatigue damage (OFD) and wetting/drying cycles (WDCs). A total of 12 CFRP/steel joints subjected to OFD and/or WDCs was tensioned to failure. Samples were collected from the debonding zone near the loading end for scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The SEM results revealed that cracks induced by OFD, and microcracks and hydrolysis caused by WDCs in the adhesive were the main reasons for interfacial bonding degradation. OFD introduced localized cracks in the adhesive, whereas WDCs caused widely distributed and staggered microcracks in the adhesive. OFD-induced cracks accelerated moisture intrusion and subsequently enhanced the generation of microcracks, leading to a further decrease in the interfacial bond strength. In addition, the EDS results demonstrated a content change in interfacial chemical elements and precipitates at different sampling locations, which also confirmed the above mechanical degradation mechanism. Furthermore, changes in the load capacity, interfacial stiffness, and failure mode were examined, and the aforementioned degradation mechanism was verified. • The characteristics of fatigue- and/or moisture-induced cracks in adhesive were revealed. • The crack formation was examined from physical and chemical aspects. • Changes in mechanical behavior and failure mode were explained based on microscopic tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
hhhhhhh完成签到,获得积分10
3秒前
snah完成签到 ,获得积分10
4秒前
深情映冬完成签到,获得积分20
4秒前
lvsehx发布了新的文献求助10
4秒前
香蕉觅云应助ichi采纳,获得10
4秒前
二丙完成签到 ,获得积分10
6秒前
123发布了新的文献求助10
6秒前
FashionBoy应助善莫大焉采纳,获得10
7秒前
平常的凡白完成签到 ,获得积分10
8秒前
hello2001完成签到 ,获得积分10
11秒前
李家静完成签到 ,获得积分10
14秒前
14秒前
yaoyaoyao完成签到 ,获得积分10
15秒前
andrele发布了新的文献求助10
15秒前
Hey完成签到 ,获得积分10
17秒前
17秒前
husky完成签到 ,获得积分10
17秒前
楠木南完成签到,获得积分10
18秒前
22秒前
小明小红完成签到,获得积分10
23秒前
Diamond完成签到 ,获得积分10
23秒前
暮暮完成签到,获得积分10
24秒前
26秒前
27秒前
赘婿应助zb采纳,获得10
27秒前
27秒前
甄埠绰完成签到,获得积分10
28秒前
甄埠绰发布了新的文献求助10
30秒前
qq发布了新的文献求助10
30秒前
DaisyChan完成签到 ,获得积分10
32秒前
RXwang发布了新的文献求助10
33秒前
壮观烧鹅完成签到 ,获得积分10
35秒前
36秒前
樱桃味的火苗完成签到,获得积分10
37秒前
Stove完成签到,获得积分10
40秒前
不与仙同完成签到 ,获得积分10
41秒前
田様应助RXwang采纳,获得10
41秒前
42秒前
笑点低的凡之完成签到,获得积分10
43秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171338
求助须知:如何正确求助?哪些是违规求助? 2822329
关于积分的说明 7938771
捐赠科研通 2482804
什么是DOI,文献DOI怎么找? 1322791
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627