Degradation mechanism of steel/CFRP plate interface subjected to overloading fatigue and wetting/drying cycles

润湿 降级(电信) 材料科学 复合材料 机制(生物学) 接口(物质) 工程类 坐滴法 哲学 认识论 电信
作者
Junhui Li,Yan Xie,Miaochang Zhu,Haifeng Xu,Jun Deng
出处
期刊:Thin-walled Structures [Elsevier]
卷期号:179: 109644-109644 被引量:11
标识
DOI:10.1016/j.tws.2022.109644
摘要

The bond strength of the interface between carbon fiber-reinforced polymer (CFRP) and steel is crucial for CFRP-reinforced steel structures. However, the influence of fatigue loading and the service environment on the bond durability of strengthened steel structures requires further investigation. This work focused on the bond degradation mechanism of the steel/CFRP interface subjected to overloading fatigue damage (OFD) and wetting/drying cycles (WDCs). A total of 12 CFRP/steel joints subjected to OFD and/or WDCs was tensioned to failure. Samples were collected from the debonding zone near the loading end for scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The SEM results revealed that cracks induced by OFD, and microcracks and hydrolysis caused by WDCs in the adhesive were the main reasons for interfacial bonding degradation. OFD introduced localized cracks in the adhesive, whereas WDCs caused widely distributed and staggered microcracks in the adhesive. OFD-induced cracks accelerated moisture intrusion and subsequently enhanced the generation of microcracks, leading to a further decrease in the interfacial bond strength. In addition, the EDS results demonstrated a content change in interfacial chemical elements and precipitates at different sampling locations, which also confirmed the above mechanical degradation mechanism. Furthermore, changes in the load capacity, interfacial stiffness, and failure mode were examined, and the aforementioned degradation mechanism was verified. • The characteristics of fatigue- and/or moisture-induced cracks in adhesive were revealed. • The crack formation was examined from physical and chemical aspects. • Changes in mechanical behavior and failure mode were explained based on microscopic tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
min发布了新的文献求助10
刚刚
1秒前
邹家园发布了新的文献求助10
1秒前
1秒前
1秒前
小w发布了新的文献求助10
1秒前
xiaoxutongxue发布了新的文献求助10
1秒前
hhhg应助风中的觅海采纳,获得10
2秒前
2秒前
希望天下0贩的0应助桃桃采纳,获得10
2秒前
2秒前
所所应助略略略采纳,获得10
2秒前
3秒前
ljj001ljj完成签到,获得积分10
3秒前
隐形曼青应助姜姜采纳,获得10
3秒前
3秒前
4秒前
4秒前
端庄威完成签到,获得积分10
4秒前
xuerui发布了新的文献求助10
4秒前
5秒前
伶俐的绝施完成签到 ,获得积分10
5秒前
初余发布了新的文献求助10
6秒前
WN发布了新的文献求助10
6秒前
6秒前
搞怪的又蓝完成签到,获得积分10
6秒前
是燕晓的燕完成签到,获得积分10
6秒前
7秒前
Dave发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Owen应助糟糕的乐驹采纳,获得10
8秒前
8秒前
wang完成签到,获得积分10
9秒前
彭于晏应助123采纳,获得10
9秒前
ll发布了新的文献求助10
9秒前
绵绵发布了新的文献求助10
9秒前
9秒前
Ice发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430333
求助须知:如何正确求助?哪些是违规求助? 4543541
关于积分的说明 14187728
捐赠科研通 4461680
什么是DOI,文献DOI怎么找? 2446276
邀请新用户注册赠送积分活动 1437642
关于科研通互助平台的介绍 1414420