Predicting aggregate morphology of sequence-defined macromolecules with recurrent neural networks

序列(生物学) 代表(政治) 计算机科学 骨料(复合) 人工神经网络 高分子 人工智能 生物系统 序列空间 机器学习 算法 纳米技术 化学 数学 材料科学 生物 生物化学 巴拿赫空间 政治 政治学 纯数学 法学
作者
Debjyoti Bhattacharya,Devon C. Kleeblatt,Antonia Statt,Wesley F. Reinhart
出处
期刊:Soft Matter [Royal Society of Chemistry]
卷期号:18 (27): 5037-5051 被引量:18
标识
DOI:10.1039/d2sm00452f
摘要

Self-assembly of dilute sequence-defined macromolecules is a complex phenomenon in which the local arrangement of chemical moieties can lead to the formation of long-range structure. The dependence of this structure on the sequence necessarily implies that a mapping between the two exists, yet it has been difficult to model so far. Predicting the aggregation behavior of these macromolecules is challenging due to the lack of effective order parameters, a vast design space, inherent variability, and high computational costs associated with currently available simulation techniques. Here, we accurately predict the morphology of aggregates self-assembled from sequence-defined macromolecules using supervised machine learning. We find that regression models with implicit representation learning perform significantly better than those based on engineered features such as k-mer counting, and a recurrent-neural-network-based regressor performs the best out of nine model architectures we tested. Furthermore, we demonstrate the high-throughput screening of monomer sequences using the regression model to identify candidates for self-assembly into selected morphologies. Our strategy is shown to successfully identify multiple suitable sequences in every test we performed, so we hope the insights gained here can be extended to other increasingly complex design scenarios in the future, such as the design of sequences under polydispersity and at varying environmental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zo完成签到,获得积分10
刚刚
xiatl完成签到,获得积分10
1秒前
1秒前
1秒前
隐形曼青应助早点睡觉吧采纳,获得10
2秒前
青竹完成签到,获得积分10
2秒前
3秒前
李艳发布了新的文献求助10
4秒前
6秒前
13201099463完成签到,获得积分10
7秒前
善学以致用应助小肥采纳,获得10
8秒前
8秒前
10秒前
11秒前
小马甲应助Jane采纳,获得10
11秒前
星辰大海应助坦率白山采纳,获得10
13秒前
稳重的巨人完成签到,获得积分10
13秒前
蔫蔫完成签到,获得积分10
14秒前
霜序完成签到,获得积分10
15秒前
在水一方应助糟糕的可乐采纳,获得10
15秒前
16秒前
聪明的傲白完成签到,获得积分10
16秒前
17秒前
名天发布了新的文献求助10
17秒前
脑洞疼应助Eden采纳,获得10
18秒前
20秒前
哈哈哈哈发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
领导范儿应助胖哥采纳,获得10
24秒前
24秒前
名天发布了新的文献求助10
27秒前
Slide完成签到 ,获得积分20
28秒前
SYLH应助哈哈公子25采纳,获得10
29秒前
酷波er应助哈哈公子25采纳,获得10
29秒前
30秒前
彭a完成签到,获得积分10
30秒前
ccc完成签到,获得积分10
31秒前
Jane完成签到,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429