亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting aggregate morphology of sequence-defined macromolecules with recurrent neural networks

序列(生物学) 代表(政治) 计算机科学 骨料(复合) 人工神经网络 高分子 人工智能 生物系统 序列空间 机器学习 算法 纳米技术 化学 数学 材料科学 生物 生物化学 巴拿赫空间 政治 政治学 纯数学 法学
作者
Debjyoti Bhattacharya,Devon C. Kleeblatt,Antonia Statt,Wesley F. Reinhart
出处
期刊:Soft Matter [The Royal Society of Chemistry]
卷期号:18 (27): 5037-5051 被引量:18
标识
DOI:10.1039/d2sm00452f
摘要

Self-assembly of dilute sequence-defined macromolecules is a complex phenomenon in which the local arrangement of chemical moieties can lead to the formation of long-range structure. The dependence of this structure on the sequence necessarily implies that a mapping between the two exists, yet it has been difficult to model so far. Predicting the aggregation behavior of these macromolecules is challenging due to the lack of effective order parameters, a vast design space, inherent variability, and high computational costs associated with currently available simulation techniques. Here, we accurately predict the morphology of aggregates self-assembled from sequence-defined macromolecules using supervised machine learning. We find that regression models with implicit representation learning perform significantly better than those based on engineered features such as k-mer counting, and a recurrent-neural-network-based regressor performs the best out of nine model architectures we tested. Furthermore, we demonstrate the high-throughput screening of monomer sequences using the regression model to identify candidates for self-assembly into selected morphologies. Our strategy is shown to successfully identify multiple suitable sequences in every test we performed, so we hope the insights gained here can be extended to other increasingly complex design scenarios in the future, such as the design of sequences under polydispersity and at varying environmental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
liushangyuan发布了新的文献求助10
6秒前
12秒前
科目三应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
17秒前
30秒前
46秒前
1分钟前
一一完成签到,获得积分10
1分钟前
1分钟前
CHENG发布了新的文献求助20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
无情翅膀完成签到,获得积分10
1分钟前
kingwill应助CHENG采纳,获得20
1分钟前
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
liushangyuan发布了新的文献求助10
2分钟前
朴实山兰完成签到 ,获得积分10
2分钟前
2分钟前
liushangyuan关注了科研通微信公众号
2分钟前
2分钟前
浮游应助null采纳,获得10
2分钟前
2分钟前
ClarkClarkson完成签到,获得积分10
2分钟前
满意人英完成签到,获得积分10
2分钟前
默默善愁发布了新的文献求助30
2分钟前
yan完成签到,获得积分10
2分钟前
2分钟前
乐乐应助yan采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413236
求助须知:如何正确求助?哪些是违规求助? 4530397
关于积分的说明 14122909
捐赠科研通 4445358
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408692