A mechanistic model for the prediction of flow pattern transitions during separation of liquid-liquid pipe flows

聚结(物理) 材料科学 沉淀 下降(电信) 机械 压力降 两相流 体积流量 粘度 热力学 流量(数学) 复合材料 计算机科学 电信 天体生物学 物理
作者
Nikola Evripidou,Carlos Ávila,Panagiota Angeli
出处
期刊:International Journal of Multiphase Flow [Elsevier BV]
卷期号:155: 104172-104172 被引量:4
标识
DOI:10.1016/j.ijmultiphaseflow.2022.104172
摘要

A one-dimensional mechanistic model that predicts the flow pattern transitions during the separation of dispersed liquid-liquid flows in horizontal pipes was developed. The model is able to capture the evolution along the pipe of the four characteristic layers that develop from initially dispersed flows of either oil-in-water or water-in-oil at a range of mixture velocities: a pure water layer at the bottom, a settling (flotation/sedimentation) layer, a dense-packed zone, and a pure oil layer on the top. Coalescence correlations from literature were included in the model to predict the drop growth due to binary drop coalescence and the coalescence rate of drops with their corresponding interface. The model predictions on the evolution of the heights of the different layers were partly compared against available experimental data obtained in a pilot scale two-phase flow facility in a test section of 0.037 m inner diameter using tap water and an oil of density 828 kg m−3 and viscosity 5.5 mPa s as test fluids, and in a 0.1 m inner diameter test section using water and an oil of density 857 kg m−3 and viscosity 13.6 mPa s. It was shown that the evolution of the four characteristic layers depends on the rates of drop settling and drop-interface coalescence. Oil-in-water dispersions separated faster than water-in-oil ones, while dispersions with smaller drop-sizes were more likely to exhibit depletion of the dense-packed zone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanwan发布了新的文献求助30
1秒前
星辰大海应助花花呀采纳,获得10
2秒前
JamesPei应助落寞奎采纳,获得10
2秒前
zying发布了新的文献求助20
3秒前
4秒前
爱你沛沛完成签到 ,获得积分10
5秒前
Orange应助111采纳,获得10
7秒前
Owen应助Hermon采纳,获得20
7秒前
8秒前
神勇的砖头完成签到,获得积分10
8秒前
chlgkmoney完成签到 ,获得积分10
9秒前
科研通AI5应助wen采纳,获得10
9秒前
不及阁大学士完成签到,获得积分10
11秒前
12秒前
_Y_X_L_发布了新的文献求助10
12秒前
12秒前
16秒前
16秒前
haocheng完成签到,获得积分20
16秒前
淡淡代玉发布了新的文献求助20
17秒前
彭于晏应助ice采纳,获得10
17秒前
zommen完成签到 ,获得积分10
18秒前
花花呀发布了新的文献求助10
18秒前
桃子发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
Hermon发布了新的文献求助20
21秒前
21秒前
21秒前
11发布了新的文献求助10
22秒前
JamesPei应助_Y_X_L_采纳,获得10
22秒前
半天发布了新的文献求助10
23秒前
cyw完成签到,获得积分10
23秒前
Hw发布了新的文献求助10
25秒前
crz发布了新的文献求助10
25秒前
至幸发布了新的文献求助10
28秒前
木木应助科研通管家采纳,获得10
28秒前
雪花发布了新的文献求助10
28秒前
所所应助科研通管家采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997679
求助须知:如何正确求助?哪些是违规求助? 3537190
关于积分的说明 11270985
捐赠科研通 3276344
什么是DOI,文献DOI怎么找? 1806900
邀请新用户注册赠送积分活动 883582
科研通“疑难数据库(出版商)”最低求助积分说明 809975