A mechanistic model for the prediction of flow pattern transitions during separation of liquid-liquid pipe flows

聚结(物理) 材料科学 沉淀 下降(电信) 机械 压力降 两相流 体积流量 粘度 热力学 流量(数学) 复合材料 计算机科学 电信 天体生物学 物理
作者
Nikola Evripidou,Carlos Ávila,Panagiota Angeli
出处
期刊:International Journal of Multiphase Flow [Elsevier]
卷期号:155: 104172-104172 被引量:4
标识
DOI:10.1016/j.ijmultiphaseflow.2022.104172
摘要

A one-dimensional mechanistic model that predicts the flow pattern transitions during the separation of dispersed liquid-liquid flows in horizontal pipes was developed. The model is able to capture the evolution along the pipe of the four characteristic layers that develop from initially dispersed flows of either oil-in-water or water-in-oil at a range of mixture velocities: a pure water layer at the bottom, a settling (flotation/sedimentation) layer, a dense-packed zone, and a pure oil layer on the top. Coalescence correlations from literature were included in the model to predict the drop growth due to binary drop coalescence and the coalescence rate of drops with their corresponding interface. The model predictions on the evolution of the heights of the different layers were partly compared against available experimental data obtained in a pilot scale two-phase flow facility in a test section of 0.037 m inner diameter using tap water and an oil of density 828 kg m−3 and viscosity 5.5 mPa s as test fluids, and in a 0.1 m inner diameter test section using water and an oil of density 857 kg m−3 and viscosity 13.6 mPa s. It was shown that the evolution of the four characteristic layers depends on the rates of drop settling and drop-interface coalescence. Oil-in-water dispersions separated faster than water-in-oil ones, while dispersions with smaller drop-sizes were more likely to exhibit depletion of the dense-packed zone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
倾听阳光完成签到 ,获得积分10
4秒前
笨笨青筠完成签到 ,获得积分10
4秒前
怡然的复天完成签到,获得积分10
5秒前
GingerF应助昏睡的蟠桃采纳,获得200
7秒前
科研通AI6应助阿辉采纳,获得10
8秒前
14秒前
Brenda完成签到,获得积分10
18秒前
酸酸完成签到 ,获得积分10
19秒前
Tom完成签到,获得积分10
21秒前
Hello应助Siliang采纳,获得10
23秒前
酸酸关注了科研通微信公众号
24秒前
keyanlv完成签到,获得积分10
29秒前
子苓完成签到 ,获得积分10
29秒前
bing完成签到,获得积分10
30秒前
zxj完成签到,获得积分10
31秒前
hwl26完成签到,获得积分10
32秒前
SARON完成签到 ,获得积分10
35秒前
锥子完成签到,获得积分10
37秒前
路路完成签到 ,获得积分10
39秒前
陶军辉完成签到 ,获得积分10
40秒前
感动清炎完成签到,获得积分10
42秒前
42秒前
wanci应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
42秒前
chrisio应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
852应助科研通管家采纳,获得10
42秒前
Clara应助科研通管家采纳,获得10
42秒前
子车茗应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
43秒前
Tao应助科研通管家采纳,获得10
43秒前
BareBear应助科研通管家采纳,获得10
43秒前
pluto应助科研通管家采纳,获得10
43秒前
ludong_0应助科研通管家采纳,获得10
43秒前
无极微光应助科研通管家采纳,获得20
43秒前
BareBear应助科研通管家采纳,获得10
43秒前
pluto应助科研通管家采纳,获得10
43秒前
子车茗应助科研通管家采纳,获得10
43秒前
BareBear应助科研通管家采纳,获得10
43秒前
BareBear应助科研通管家采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498677
求助须知:如何正确求助?哪些是违规求助? 4595836
关于积分的说明 14450003
捐赠科研通 4528827
什么是DOI,文献DOI怎么找? 2481735
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438581