A dynamic-model-based fault diagnosis method for a wind turbine planetary gearbox using a deep learning network

断层(地质) 可靠性(半导体) 卷积神经网络 时域 学习迁移 涡轮机 人工神经网络 工程类 计算机科学 状态监测 人工智能 振动 控制工程 计算机视觉 机械工程 功率(物理) 物理 电气工程 量子力学 地震学 地质学
作者
Dongdong Li,Yang Zhao,Yao Zhao
出处
期刊:Protection and Control of Modern Power Systems [Springer Nature]
卷期号:7 (1) 被引量:9
标识
DOI:10.1186/s41601-022-00244-z
摘要

Abstract The planetary gearbox is a critical part of wind turbines, and has great significance for their safety and reliability. Intelligent fault diagnosis methods for these gearboxes have made some achievements based on the availability of large quantities of labeled data. However, the data collected from the diagnosed devices are always unlabeled, and the acquisition of fault data from real gearboxes is time-consuming and laborious. As some gearbox faults can be conveniently simulated by a relatively precise dynamic model, the data from dynamic simulation containing some features are related to those from the actual machines. As a potential tool, transfer learning adapts a network trained in a source domain to its application in a target domain. Therefore, a novel fault diagnosis method combining transfer learning with dynamic model is proposed to identify the health conditions of planetary gearboxes. In the method, a modified lumped-parameter dynamic model of a planetary gear train is established to simulate the resultant vibration signal, while an optimized deep transfer learning network based on a one-dimensional convolutional neural network is built to extract domain-invariant features from different domains to achieve fault classification. Various groups of transfer diagnosis experiments of planetary gearboxes are carried out, and the experimental results demonstrate the effectiveness and the reliability of both the dynamic model and the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
所所应助11采纳,获得10
1秒前
11111111完成签到,获得积分10
1秒前
YUDI完成签到,获得积分10
1秒前
2秒前
thuuu完成签到,获得积分10
2秒前
2秒前
nn完成签到,获得积分10
2秒前
3秒前
呦呦又鹿完成签到,获得积分10
3秒前
fengyi2999完成签到,获得积分10
3秒前
wst1988完成签到,获得积分10
3秒前
一原君完成签到,获得积分20
3秒前
充电宝应助fanfan采纳,获得10
3秒前
蘅大爷完成签到,获得积分10
3秒前
大啊蓉发布了新的文献求助10
4秒前
liumu完成签到 ,获得积分10
4秒前
李健的小迷弟应助tienslord采纳,获得10
4秒前
shine发布了新的文献求助10
5秒前
jessie完成签到,获得积分10
5秒前
6秒前
喵喵完成签到,获得积分10
6秒前
hujialiang完成签到,获得积分10
7秒前
ly完成签到,获得积分10
7秒前
活力的青文完成签到,获得积分10
7秒前
7秒前
nico发布了新的文献求助10
7秒前
HEIKU应助清水小镇采纳,获得10
8秒前
uniphoton完成签到,获得积分10
8秒前
机灵鸡完成签到,获得积分10
8秒前
cc完成签到,获得积分10
8秒前
8秒前
222发布了新的文献求助10
9秒前
DaYongDan完成签到 ,获得积分10
9秒前
chen完成签到,获得积分20
10秒前
11秒前
小qin完成签到,获得积分20
11秒前
12秒前
英姑应助pc 潮采纳,获得10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167504
求助须知:如何正确求助?哪些是违规求助? 2819024
关于积分的说明 7924226
捐赠科研通 2478829
什么是DOI,文献DOI怎么找? 1320511
科研通“疑难数据库(出版商)”最低求助积分说明 632810
版权声明 602443