A dynamic-model-based fault diagnosis method for a wind turbine planetary gearbox using a deep learning network

断层(地质) 可靠性(半导体) 卷积神经网络 时域 学习迁移 涡轮机 人工神经网络 工程类 计算机科学 状态监测 人工智能 振动 控制工程 计算机视觉 物理 地质学 电气工程 机械工程 功率(物理) 地震学 量子力学
作者
Dongdong Li,Yang Zhao,Yao Zhao
出处
期刊:Protection and Control of Modern Power Systems [Springer Nature]
卷期号:7 (1) 被引量:9
标识
DOI:10.1186/s41601-022-00244-z
摘要

Abstract The planetary gearbox is a critical part of wind turbines, and has great significance for their safety and reliability. Intelligent fault diagnosis methods for these gearboxes have made some achievements based on the availability of large quantities of labeled data. However, the data collected from the diagnosed devices are always unlabeled, and the acquisition of fault data from real gearboxes is time-consuming and laborious. As some gearbox faults can be conveniently simulated by a relatively precise dynamic model, the data from dynamic simulation containing some features are related to those from the actual machines. As a potential tool, transfer learning adapts a network trained in a source domain to its application in a target domain. Therefore, a novel fault diagnosis method combining transfer learning with dynamic model is proposed to identify the health conditions of planetary gearboxes. In the method, a modified lumped-parameter dynamic model of a planetary gear train is established to simulate the resultant vibration signal, while an optimized deep transfer learning network based on a one-dimensional convolutional neural network is built to extract domain-invariant features from different domains to achieve fault classification. Various groups of transfer diagnosis experiments of planetary gearboxes are carried out, and the experimental results demonstrate the effectiveness and the reliability of both the dynamic model and the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助朴素的松采纳,获得10
3秒前
善学以致用应助伯言采纳,获得10
3秒前
张玮发布了新的文献求助10
5秒前
ri_290完成签到,获得积分10
7秒前
shiori发布了新的文献求助10
7秒前
科研通AI6应助Echo采纳,获得10
7秒前
14秒前
打打应助朴素的松采纳,获得10
14秒前
伯言发布了新的文献求助10
17秒前
NexusExplorer应助Lialilico采纳,获得10
18秒前
风格完成签到,获得积分10
19秒前
kingwhitewing发布了新的文献求助10
20秒前
21秒前
Aron发布了新的文献求助10
21秒前
26秒前
26秒前
烟花应助yang采纳,获得10
27秒前
Owen应助inter采纳,获得10
27秒前
lynn发布了新的文献求助10
31秒前
FLyu发布了新的文献求助10
31秒前
32秒前
小蘑菇应助土豆土豆采纳,获得10
32秒前
niNe3YUE应助研友_Ljqal8采纳,获得10
33秒前
长情的海亦完成签到,获得积分10
35秒前
12发布了新的文献求助100
36秒前
37秒前
shiori完成签到,获得积分10
37秒前
隐形曼青应助Jodie采纳,获得10
39秒前
41秒前
郭6666发布了新的文献求助10
43秒前
FLyu完成签到,获得积分10
43秒前
耶椰发布了新的文献求助10
45秒前
12完成签到,获得积分10
45秒前
欣喜的元绿完成签到,获得积分10
50秒前
50秒前
52秒前
54秒前
58秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550