A dynamic-model-based fault diagnosis method for a wind turbine planetary gearbox using a deep learning network

断层(地质) 可靠性(半导体) 卷积神经网络 时域 学习迁移 涡轮机 人工神经网络 工程类 计算机科学 状态监测 人工智能 振动 控制工程 计算机视觉 机械工程 功率(物理) 物理 电气工程 量子力学 地震学 地质学
作者
Dongdong Li,Yang Zhao,Yao Zhao
出处
期刊:Protection and Control of Modern Power Systems [Springer Science+Business Media]
卷期号:7 (1) 被引量:9
标识
DOI:10.1186/s41601-022-00244-z
摘要

Abstract The planetary gearbox is a critical part of wind turbines, and has great significance for their safety and reliability. Intelligent fault diagnosis methods for these gearboxes have made some achievements based on the availability of large quantities of labeled data. However, the data collected from the diagnosed devices are always unlabeled, and the acquisition of fault data from real gearboxes is time-consuming and laborious. As some gearbox faults can be conveniently simulated by a relatively precise dynamic model, the data from dynamic simulation containing some features are related to those from the actual machines. As a potential tool, transfer learning adapts a network trained in a source domain to its application in a target domain. Therefore, a novel fault diagnosis method combining transfer learning with dynamic model is proposed to identify the health conditions of planetary gearboxes. In the method, a modified lumped-parameter dynamic model of a planetary gear train is established to simulate the resultant vibration signal, while an optimized deep transfer learning network based on a one-dimensional convolutional neural network is built to extract domain-invariant features from different domains to achieve fault classification. Various groups of transfer diagnosis experiments of planetary gearboxes are carried out, and the experimental results demonstrate the effectiveness and the reliability of both the dynamic model and the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜西西西完成签到,获得积分10
刚刚
1秒前
3秒前
3秒前
飞飞鱼完成签到,获得积分10
4秒前
5秒前
友好的涵易发布了新的文献求助200
6秒前
Sky完成签到,获得积分10
6秒前
科目三应助haha采纳,获得10
6秒前
福尔摩云发布了新的文献求助30
8秒前
wade发布了新的文献求助10
8秒前
可乐完成签到,获得积分10
10秒前
babe发布了新的文献求助10
10秒前
ddli发布了新的文献求助10
10秒前
11秒前
exile完成签到,获得积分10
11秒前
星辰大海应助七七八八采纳,获得10
14秒前
科目三应助vivia采纳,获得30
14秒前
畅享未来完成签到,获得积分10
15秒前
Asteria完成签到,获得积分10
15秒前
leeeeee发布了新的文献求助10
15秒前
DH发布了新的文献求助10
16秒前
福尔摩云完成签到,获得积分10
16秒前
美满鸭子发布了新的文献求助30
17秒前
现代山雁完成签到 ,获得积分10
17秒前
田様应助CHEN采纳,获得10
19秒前
19秒前
yuyu发布了新的文献求助10
21秒前
蒹葭苍苍完成签到,获得积分10
21秒前
大个应助yongjie20031121采纳,获得10
22秒前
淡定从凝发布了新的文献求助10
23秒前
风清扬应助haha采纳,获得10
24秒前
米米米完成签到 ,获得积分10
25秒前
25秒前
pie发布了新的文献求助10
26秒前
28秒前
31秒前
31秒前
vivia发布了新的文献求助30
32秒前
tjzbw完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994202
求助须知:如何正确求助?哪些是违规求助? 3534683
关于积分的说明 11266214
捐赠科研通 3274605
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724