硝基还原酶
化学
催化作用
X射线光电子能谱
电化学
检出限
组合化学
硝基
质谱法
酶
色谱法
化学工程
电极
有机化学
物理化学
烷基
工程类
作者
Yujie Ma,Mingshi Deng,Xuefeng Wang,Xinghua Gao,Haixiang Song,Yuanjun Zhu,Lingyan Feng,Zhe Yuan
标识
DOI:10.1016/j.aca.2022.340078
摘要
A type I nitroreductase-mimicking nanocatalyst based on 2H-MoS2/Co3O4 nanohybrids for trace nitroaromatic compounds detection is reported in this work. For the preparation of nanocatalyst, ultrathin Co3O4 nanoflakes array was in-situ grown onto 2H-MoS2 nanosheets forming three-dimensional (3D) nanohybrid with large specific surface area as well as abundant active sites. The as-prepared nanocatalyst shows a specific affinity as well as high catalytic activity towards nitroaromatic compounds. Given the favorable nitroreductase-mimicking catalytic activity of 2H-MoS2/Co3O4 nanohybrid, a sensitive and efficient electrochemical microsensor has been constructed for the detection of 2, 4, 6-trinitrotoluene (TNT). Under optimized conditions, the microsensor displayed sensitive response from μM to pM levels with a limit of detection (LOD) of 1 pM. We further employed photoelectron spectroscopy (XPS) analysis and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method to identify the nitroreductase-mimicking mechanism of 2H-MoS2/Co3O4 nanohybrids towards 2, 4, 6- TNT. It was found that the abundant oxygen vacancies in ultrathin Co3O4 nanoflakes played an essential role in determining its catalytic performance. Moreover, the developed MoS2/Co3O4 nanozyme has a lower Michaelis-Menten constant (km) than that of nature nitroreductase demonstrating a good enzymatic affinity towards its substrates, and further generating a high catalytic activity. This research not only proposed a new type of nanozyme, but also developed a portable electrochemical microsensor for the detection of 2, 4, 6-TNT.
科研通智能强力驱动
Strongly Powered by AbleSci AI