Weakly Supervised Video Moment Localization with Contrastive Negative Sample Mining

判别式 计算机科学 人工智能 样品(材料) 视频质量 注释 编码(集合论) 力矩(物理) 质量(理念) 模式识别(心理学) 公制(单位) 化学 运营管理 物理 集合(抽象数据类型) 色谱法 经典力学 经济 程序设计语言 哲学 认识论
作者
Minghang Zheng,Yanjie Huang,Qing-Chao Chen,Yang Liu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (3): 3517-3525 被引量:52
标识
DOI:10.1609/aaai.v36i3.20263
摘要

Video moment localization aims at localizing the video segments which are most related to the given free-form natural language query. The weakly supervised setting, where only video level description is available during training, is getting more and more attention due to its lower annotation cost. Prior weakly supervised methods mainly use sliding windows to generate temporal proposals, which are independent of video content and low quality, and train the model to distinguish matched video-query pairs and unmatched ones collected from different videos, while neglecting what the model needs is to distinguish the unaligned segments within the video. In this work, we propose a novel weakly supervised solution by introducing Contrastive Negative sample Mining (CNM). Specifically, we use a learnable Gaussian mask to generate positive samples, highlighting the video frames most related to the query, and consider other frames of the video and the whole video as easy and hard negative samples respectively. We then train our network with the Intra-Video Contrastive loss to make our positive and negative samples more discriminative. Our method has two advantages: (1) Our proposal generation process with a learnable Gaussian mask is more efficient and makes our positive sample higher quality. (2) The more difficult intra-video negative samples enable our model to distinguish highly confusing scenes. Experiments on two datasets show the effectiveness of our method. Code can be found at https://github.com/minghangz/cnm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xiaopei发布了新的文献求助10
2秒前
爱做实验的宝宝完成签到,获得积分10
3秒前
4秒前
kk_1315完成签到,获得积分10
5秒前
6秒前
大模型应助Xiaopei采纳,获得30
6秒前
6秒前
7秒前
ff完成签到,获得积分10
8秒前
冷酷的诗筠完成签到,获得积分10
9秒前
9秒前
小陶完成签到,获得积分10
9秒前
李健的小迷弟应助w。采纳,获得10
9秒前
轻轻巧巧发布了新的文献求助10
10秒前
qqqqqqqqqqqq发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
zs完成签到,获得积分10
13秒前
shi完成签到,获得积分20
14秒前
淡淡的若冰应助1234采纳,获得10
15秒前
勤奋千风完成签到 ,获得积分10
15秒前
16秒前
17秒前
shinysparrow应助drwalyssa采纳,获得100
17秒前
17秒前
zs发布了新的文献求助10
18秒前
xxhhxlslby发布了新的文献求助10
18秒前
Hi完成签到,获得积分10
19秒前
某某完成签到,获得积分10
19秒前
miao发布了新的文献求助10
20秒前
Trailblazer完成签到,获得积分10
22秒前
搞怪网络发布了新的文献求助20
22秒前
午夜煎饼完成签到,获得积分10
25秒前
汉堡包应助科研老头采纳,获得10
26秒前
27秒前
27秒前
27秒前
28秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207432
求助须知:如何正确求助?哪些是违规求助? 2856761
关于积分的说明 8107137
捐赠科研通 2522079
什么是DOI,文献DOI怎么找? 1355350
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613478