Facial Micro-Expression Recognition Based on Deep Local-Holistic Network

计算机科学 模式识别(心理学) 表达式(计算机科学) 面部表情识别 人工智能 卷积神经网络 面部表情 面部识别系统 程序设计语言
作者
Jingting Li,Ting Wang,Sujing Wang
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (9): 4643-4643 被引量:18
标识
DOI:10.3390/app12094643
摘要

A micro-expression is a subtle, local and brief facial movement. It can reveal the genuine emotions that a person tries to conceal and is considered an important clue for lie detection. The micro-expression research has attracted much attention due to its promising applications in various fields. However, due to the short duration and low intensity of micro-expression movements, micro-expression recognition faces great challenges, and the accuracy still demands improvement. To improve the efficiency of micro-expression feature extraction, inspired by the psychological study of attentional resource allocation for micro-expression cognition, we propose a deep local-holistic network method for micro-expression recognition. Our proposed algorithm consists of two sub-networks. The first is a Hierarchical Convolutional Recurrent Neural Network (HCRNN), which extracts the local and abundant spatio-temporal micro-expression features. The second is a Robust principal-component-analysis-based recurrent neural network (RPRNN), which extracts global and sparse features with micro-expression-specific representations. The extracted effective features are employed for micro-expression recognition through the fusion of sub-networks. We evaluate the proposed method on combined databases consisting of the four most commonly used databases, i.e., CASME, CASME II, CAS(ME)2, and SAMM. The experimental results show that our method achieves a reasonably good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Dr_Wang发布了新的文献求助10
1秒前
zhang完成签到 ,获得积分10
4秒前
5秒前
zs1min完成签到,获得积分10
5秒前
可爱的函函应助66采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
Singularity应助蓝桉采纳,获得10
9秒前
9秒前
Xman完成签到,获得积分10
9秒前
11秒前
luoyy9487完成签到,获得积分20
11秒前
咸鱼发布了新的文献求助20
11秒前
不爱清汤爱麻辣完成签到,获得积分10
12秒前
13秒前
666发布了新的文献求助10
13秒前
14秒前
15秒前
66发布了新的文献求助10
15秒前
愉快的盼曼完成签到,获得积分10
15秒前
17秒前
之组长了发布了新的文献求助30
18秒前
Lucas应助小猛人采纳,获得10
19秒前
雨er发布了新的文献求助10
19秒前
20秒前
super chan发布了新的文献求助10
20秒前
空禅yew发布了新的文献求助10
20秒前
文风杰采发布了新的文献求助10
22秒前
ggg完成签到,获得积分20
23秒前
姚宇欣完成签到,获得积分10
24秒前
在水一方应助陈迹采纳,获得10
25秒前
hyhy完成签到 ,获得积分10
26秒前
orixero应助tyhmugua采纳,获得10
26秒前
666完成签到,获得积分10
27秒前
28秒前
29秒前
科研通AI2S应助yzm788695采纳,获得30
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451