Computer simulation and design of DNA-nanoprobe for fluorescence imaging DNA repair enzyme in living cells

纳米探针 AP站点 DNA 合理设计 荧光 DNA修复 核酸内切酶 DNA损伤 生物物理学 化学 纳米技术 生物化学 生物 材料科学 物理 量子力学
作者
Chen Tian,Guangzhong Liang,Chunyi Wang,Ruikai He,Keni Ning,Zhe Li,Runduo Liu,Yan Ma,Shixia Guan,Jiewei Deng,Junqiu Zhai
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:211: 114360-114360 被引量:9
标识
DOI:10.1016/j.bios.2022.114360
摘要

In situ imaging of DNA repair enzymes in living cells gives important insights to diagnosis and explore the formation of various diseases. Fluorescent probes have become a powerful and widely used technique for their high sensitivity and real-time capabilities, but empirical design and optimization of the corresponding probes can be blind and time-consuming. Herein, we report a strategy combining experimental studies with molecular simulation techniques for the rapid and rational design of sensitive fluorescent DNA probes for a representative DNA repair enzyme human apurinic/apyrimidinic endonuclease 1 (APE1). Extended-system Adaptive Biasing Force (eABF) was applied to study the interaction mechanism between DNA probes with respect to the enzyme, based on which a novel sensitive DNA probe was designed efficiently and economically. Product inhibition effect which significantly limited the sensitivity of existing probes was eliminated by decreasing the key interactions between DNA probe products and enzyme. Experimental mechanism studies showed the existence of intramolecular hairpin structure in DNA probes is important for the recognition of APE1 and elimination of product inhibition, which is in consistent with the simulations. The obtained fluorescent DNA nanoprobe (Nanoprobe N) showed a high sensitivity for APE1 with the detection limit as low as 0.5 U/L (∼0.018 pM), and the Nanoprobe N could effectively respond to the variation of APE1 within cells and distinguish cancer cells from normal cells. This work not only demonstrated the effectiveness of molecular simulations in probe design, but also provided a reliable platform for accurate imaging of APE1 and effectors screening at single-cell level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LUNWENREQUEST发布了新的文献求助10
1秒前
大模型应助匹诺曹采纳,获得10
2秒前
ding应助过时的又槐采纳,获得10
3秒前
6秒前
鄙视注册完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
落寞溪灵完成签到 ,获得积分10
10秒前
玖玖柒idol完成签到,获得积分10
10秒前
曌虞完成签到,获得积分10
10秒前
11秒前
啥,这都是啥完成签到,获得积分10
11秒前
皮皮桂发布了新的文献求助10
12秒前
13秒前
大大发布了新的文献求助10
13秒前
14秒前
orixero应助wang1090采纳,获得30
16秒前
16秒前
l11x29发布了新的文献求助10
18秒前
lin完成签到,获得积分10
18秒前
大侠发布了新的文献求助10
19秒前
19秒前
是锦锦呀完成签到,获得积分10
19秒前
19秒前
李秋静发布了新的文献求助10
20秒前
zhen发布了新的文献求助50
22秒前
是锦锦呀发布了新的文献求助60
22秒前
Khr1stINK发布了新的文献求助10
24秒前
25秒前
NexusExplorer应助Dddd采纳,获得10
27秒前
27秒前
Akim应助zhaowenxian采纳,获得10
28秒前
谦让的鹏煊完成签到,获得积分10
29秒前
zccc完成签到 ,获得积分10
30秒前
31秒前
hhzz发布了新的文献求助10
32秒前
坚定的雁完成签到 ,获得积分10
33秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808