Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization

支持向量机 岩体分类 阿达布思 特征(语言学) 人工智能 灵敏度(控制系统) 计算机科学 机器学习 滤波器(信号处理) 数据挖掘 特征选择 替代模型 模式识别(心理学) 工程类 采矿工程 岩土工程 计算机视觉 语言学 哲学 电子工程
作者
Yin Bo,Quansheng Liu,Xing Huang,Yucong Pan
出处
期刊:Tunnelling and Underground Space Technology [Elsevier BV]
卷期号:124: 104448-104448 被引量:29
标识
DOI:10.1016/j.tust.2022.104448
摘要

In-time perception of changing geological conditions is crucial for safe and efficient TBM tunneling. Precisely detecting or predicting the rock mass qualities ahead of the tunnel face can forewarn the geological disasters (e.g., burst or squeezing behaviors of surrounding rock mass). A novel hybridization model based on CatBooost and Sequential Model-Based Optimization (SMBO) is proposed in this study. Firstly, a database incorporating 4464 samples acquired from the Songhua River Water Diversion Project is established using the capping method. Owing to SMBO’s different surrogate types (GP, RF, and GBRT) and performance validation, the comparisons of SMBO-CatBoost’s three types and other six hybridized models (SMBO-XGBoost, SMBO-AdaBoost, SMBO-RF, SMBO-SVM, SMBO-KNN, and SMBO-LR) are successively carried out. As a result, in terms of the optimization speed, performance, and sensitivity to poor geological conditions, SMBO(RF)-CatBoost is the most suitable model for rock mass class prediction; furthermore, it achieves the best performance ACC¯ = 0.9207 and F1¯ = 0.9178 among the seven hybridized models. Next, the scientific feature selection methods (i.e., filter, embedded) are used to reduce the model’s complexity (i.e., feature dimensions) step by step to increase the model’s on-site practicality. The determined ten influential features still can keep the model’s ACC¯ and F1¯ greater than 0.85, and only respectively declines 5.4% and 5.6% in contrast to the original performance. Subsequently, in order to explore the importance of the first-hand features and the second-hand features (i.e., composite features), a new method for more accurately calculating the rock mass boreability indices (regarded as the second-hand features) is proposed based on the big data at a relatively high sampling frequency of 1 Hz, this newly-proposed method could make these indices more of significance under the complex geological conditions. With the SHAP technique, the modified torque penetration index (TPI’) is more valuable than other second-hand and some first-hand features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人问兰发布了新的文献求助30
1秒前
1秒前
1秒前
4秒前
lulu828完成签到,获得积分10
4秒前
coc完成签到 ,获得积分10
5秒前
我一定会毕业的完成签到,获得积分10
6秒前
6秒前
CodeCraft应助tjzhaoll采纳,获得10
7秒前
8秒前
9秒前
9秒前
11秒前
所所应助花还是花采纳,获得10
11秒前
12秒前
从容山兰完成签到,获得积分20
12秒前
派大星完成签到,获得积分10
12秒前
科研通AI2S应助棉棉采纳,获得10
13秒前
王洋洋发布了新的文献求助10
14秒前
Lydia233完成签到,获得积分20
14秒前
大模型应助菲菲采纳,获得10
15秒前
15秒前
王大可发布了新的文献求助10
15秒前
从容山兰发布了新的文献求助30
15秒前
LIUJIAWEI发布了新的文献求助20
15秒前
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
酷波er应助科研通管家采纳,获得20
16秒前
17秒前
朴实的小懒虫完成签到,获得积分10
18秒前
19秒前
花痴的沂完成签到,获得积分10
19秒前
田様应助王洋洋采纳,获得10
20秒前
20秒前
科研顺利完成签到,获得积分10
21秒前
NN发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952331
求助须知:如何正确求助?哪些是违规求助? 3497729
关于积分的说明 11088592
捐赠科研通 3228329
什么是DOI,文献DOI怎么找? 1784774
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303