Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization

支持向量机 岩体分类 阿达布思 特征(语言学) 人工智能 灵敏度(控制系统) 计算机科学 机器学习 滤波器(信号处理) 数据挖掘 特征选择 替代模型 模式识别(心理学) 工程类 采矿工程 岩土工程 计算机视觉 语言学 哲学 电子工程
作者
Yin Bo,Quansheng Liu,Xing Huang,Yucong Pan
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:124: 104448-104448 被引量:29
标识
DOI:10.1016/j.tust.2022.104448
摘要

In-time perception of changing geological conditions is crucial for safe and efficient TBM tunneling. Precisely detecting or predicting the rock mass qualities ahead of the tunnel face can forewarn the geological disasters (e.g., burst or squeezing behaviors of surrounding rock mass). A novel hybridization model based on CatBooost and Sequential Model-Based Optimization (SMBO) is proposed in this study. Firstly, a database incorporating 4464 samples acquired from the Songhua River Water Diversion Project is established using the capping method. Owing to SMBO’s different surrogate types (GP, RF, and GBRT) and performance validation, the comparisons of SMBO-CatBoost’s three types and other six hybridized models (SMBO-XGBoost, SMBO-AdaBoost, SMBO-RF, SMBO-SVM, SMBO-KNN, and SMBO-LR) are successively carried out. As a result, in terms of the optimization speed, performance, and sensitivity to poor geological conditions, SMBO(RF)-CatBoost is the most suitable model for rock mass class prediction; furthermore, it achieves the best performance ACC¯ = 0.9207 and F1¯ = 0.9178 among the seven hybridized models. Next, the scientific feature selection methods (i.e., filter, embedded) are used to reduce the model’s complexity (i.e., feature dimensions) step by step to increase the model’s on-site practicality. The determined ten influential features still can keep the model’s ACC¯ and F1¯ greater than 0.85, and only respectively declines 5.4% and 5.6% in contrast to the original performance. Subsequently, in order to explore the importance of the first-hand features and the second-hand features (i.e., composite features), a new method for more accurately calculating the rock mass boreability indices (regarded as the second-hand features) is proposed based on the big data at a relatively high sampling frequency of 1 Hz, this newly-proposed method could make these indices more of significance under the complex geological conditions. With the SHAP technique, the modified torque penetration index (TPI’) is more valuable than other second-hand and some first-hand features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大雁发布了新的文献求助10
1秒前
伍六七发布了新的文献求助20
1秒前
奈义武发布了新的文献求助10
2秒前
隐形的杨发布了新的文献求助10
2秒前
李佳发布了新的文献求助10
2秒前
NexusExplorer应助OGLE采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
脱壳金蝉发布了新的文献求助10
4秒前
彭于彦祖应助Oatmeal5888采纳,获得50
6秒前
无极微光应助huaming采纳,获得20
6秒前
JamesPei应助田国兵采纳,获得10
7秒前
天天快乐应助漏漏漏采纳,获得30
8秒前
hglll445完成签到,获得积分10
9秒前
leelmomimi完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI6应助决明采纳,获得10
11秒前
既晴复雨发布了新的文献求助10
14秒前
16秒前
17秒前
脑洞疼应助我要创新点采纳,获得10
18秒前
科研通AI6应助Sj泽采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
万能图书馆应助Judy采纳,获得10
20秒前
20秒前
20秒前
21秒前
23秒前
qingmoheng应助djbj2022采纳,获得10
23秒前
简单的大哥完成签到,获得积分10
24秒前
25秒前
25秒前
zzdd应助科研通管家采纳,获得10
25秒前
zzdd应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
dew应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532418
求助须知:如何正确求助?哪些是违规求助? 4621121
关于积分的说明 14577059
捐赠科研通 4561034
什么是DOI,文献DOI怎么找? 2499113
邀请新用户注册赠送积分活动 1479059
关于科研通互助平台的介绍 1450310