Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization

支持向量机 岩体分类 阿达布思 特征(语言学) 人工智能 灵敏度(控制系统) 计算机科学 机器学习 滤波器(信号处理) 数据挖掘 特征选择 替代模型 模式识别(心理学) 工程类 采矿工程 岩土工程 计算机视觉 语言学 哲学 电子工程
作者
Yin Bo,Quansheng Liu,Xing Huang,Yucong Pan
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:124: 104448-104448 被引量:29
标识
DOI:10.1016/j.tust.2022.104448
摘要

In-time perception of changing geological conditions is crucial for safe and efficient TBM tunneling. Precisely detecting or predicting the rock mass qualities ahead of the tunnel face can forewarn the geological disasters (e.g., burst or squeezing behaviors of surrounding rock mass). A novel hybridization model based on CatBooost and Sequential Model-Based Optimization (SMBO) is proposed in this study. Firstly, a database incorporating 4464 samples acquired from the Songhua River Water Diversion Project is established using the capping method. Owing to SMBO’s different surrogate types (GP, RF, and GBRT) and performance validation, the comparisons of SMBO-CatBoost’s three types and other six hybridized models (SMBO-XGBoost, SMBO-AdaBoost, SMBO-RF, SMBO-SVM, SMBO-KNN, and SMBO-LR) are successively carried out. As a result, in terms of the optimization speed, performance, and sensitivity to poor geological conditions, SMBO(RF)-CatBoost is the most suitable model for rock mass class prediction; furthermore, it achieves the best performance ACC¯ = 0.9207 and F1¯ = 0.9178 among the seven hybridized models. Next, the scientific feature selection methods (i.e., filter, embedded) are used to reduce the model’s complexity (i.e., feature dimensions) step by step to increase the model’s on-site practicality. The determined ten influential features still can keep the model’s ACC¯ and F1¯ greater than 0.85, and only respectively declines 5.4% and 5.6% in contrast to the original performance. Subsequently, in order to explore the importance of the first-hand features and the second-hand features (i.e., composite features), a new method for more accurately calculating the rock mass boreability indices (regarded as the second-hand features) is proposed based on the big data at a relatively high sampling frequency of 1 Hz, this newly-proposed method could make these indices more of significance under the complex geological conditions. With the SHAP technique, the modified torque penetration index (TPI’) is more valuable than other second-hand and some first-hand features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhao发布了新的文献求助200
刚刚
小蘑菇应助专注小熊猫采纳,获得10
刚刚
1秒前
1秒前
pqy发布了新的文献求助10
2秒前
4秒前
孙宇发布了新的文献求助10
4秒前
bkagyin应助瘦瘦小萱采纳,获得10
5秒前
5秒前
5秒前
5秒前
7秒前
Hello应助Jtiger采纳,获得10
7秒前
无花果应助孙宇采纳,获得10
8秒前
研友_7LMbwn完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
Heisenberg发布了新的文献求助10
11秒前
糖糖钰完成签到,获得积分20
11秒前
春春发布了新的文献求助10
11秒前
现代皓轩发布了新的文献求助30
12秒前
SciGPT应助粱代芙采纳,获得10
12秒前
12秒前
jxg发布了新的文献求助10
13秒前
14秒前
SYLH应助LXa134采纳,获得10
15秒前
15秒前
QDU应助安静凡旋采纳,获得20
15秒前
GoldWind发布了新的文献求助10
15秒前
干净语梦发布了新的文献求助10
15秒前
16秒前
16秒前
所所应助合适磬采纳,获得10
16秒前
evermore发布了新的文献求助10
17秒前
Jtiger发布了新的文献求助10
18秒前
jxg完成签到,获得积分10
18秒前
旺旺老师发布了新的文献求助10
18秒前
Bibiboom发布了新的文献求助20
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490539
求助须知:如何正确求助?哪些是违规求助? 3077414
关于积分的说明 9148826
捐赠科研通 2769667
什么是DOI,文献DOI怎么找? 1519863
邀请新用户注册赠送积分活动 704336
科研通“疑难数据库(出版商)”最低求助积分说明 702135