Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization

支持向量机 岩体分类 阿达布思 特征(语言学) 人工智能 灵敏度(控制系统) 计算机科学 机器学习 滤波器(信号处理) 数据挖掘 特征选择 替代模型 模式识别(心理学) 工程类 采矿工程 岩土工程 计算机视觉 语言学 哲学 电子工程
作者
Yin Bo,Quansheng Liu,Xing Huang,Yucong Pan
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:124: 104448-104448 被引量:29
标识
DOI:10.1016/j.tust.2022.104448
摘要

In-time perception of changing geological conditions is crucial for safe and efficient TBM tunneling. Precisely detecting or predicting the rock mass qualities ahead of the tunnel face can forewarn the geological disasters (e.g., burst or squeezing behaviors of surrounding rock mass). A novel hybridization model based on CatBooost and Sequential Model-Based Optimization (SMBO) is proposed in this study. Firstly, a database incorporating 4464 samples acquired from the Songhua River Water Diversion Project is established using the capping method. Owing to SMBO’s different surrogate types (GP, RF, and GBRT) and performance validation, the comparisons of SMBO-CatBoost’s three types and other six hybridized models (SMBO-XGBoost, SMBO-AdaBoost, SMBO-RF, SMBO-SVM, SMBO-KNN, and SMBO-LR) are successively carried out. As a result, in terms of the optimization speed, performance, and sensitivity to poor geological conditions, SMBO(RF)-CatBoost is the most suitable model for rock mass class prediction; furthermore, it achieves the best performance ACC¯ = 0.9207 and F1¯ = 0.9178 among the seven hybridized models. Next, the scientific feature selection methods (i.e., filter, embedded) are used to reduce the model’s complexity (i.e., feature dimensions) step by step to increase the model’s on-site practicality. The determined ten influential features still can keep the model’s ACC¯ and F1¯ greater than 0.85, and only respectively declines 5.4% and 5.6% in contrast to the original performance. Subsequently, in order to explore the importance of the first-hand features and the second-hand features (i.e., composite features), a new method for more accurately calculating the rock mass boreability indices (regarded as the second-hand features) is proposed based on the big data at a relatively high sampling frequency of 1 Hz, this newly-proposed method could make these indices more of significance under the complex geological conditions. With the SHAP technique, the modified torque penetration index (TPI’) is more valuable than other second-hand and some first-hand features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
byby完成签到,获得积分10
2秒前
3秒前
BLAZe完成签到 ,获得积分10
3秒前
sqf1209完成签到,获得积分10
4秒前
ywindm完成签到,获得积分10
4秒前
yywang完成签到 ,获得积分10
5秒前
zeannezg完成签到 ,获得积分10
6秒前
7秒前
枫糖叶落完成签到,获得积分10
9秒前
Lucky.完成签到 ,获得积分0
10秒前
lululu完成签到 ,获得积分10
12秒前
知性的夏槐完成签到 ,获得积分10
12秒前
哈哈李完成签到,获得积分10
13秒前
小奇曲饼完成签到 ,获得积分10
13秒前
13秒前
misa完成签到 ,获得积分10
14秒前
ning_qing完成签到 ,获得积分10
15秒前
甜甜醉波完成签到,获得积分10
15秒前
善良的冷梅完成签到,获得积分10
15秒前
yywang关注了科研通微信公众号
15秒前
15秒前
Dlan完成签到,获得积分10
16秒前
呆萌井完成签到,获得积分10
16秒前
17秒前
鉴湖完成签到,获得积分10
17秒前
001完成签到,获得积分10
17秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
17秒前
efengmo完成签到,获得积分10
18秒前
天真南松完成签到,获得积分10
19秒前
讨厌下雨天完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
lii完成签到,获得积分10
23秒前
哦哦完成签到,获得积分10
24秒前
ninomae完成签到 ,获得积分10
27秒前
渴望者完成签到,获得积分10
27秒前
lzl007完成签到 ,获得积分10
28秒前
只争朝夕完成签到,获得积分10
30秒前
yin完成签到,获得积分10
30秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590