Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization

支持向量机 岩体分类 阿达布思 特征(语言学) 人工智能 灵敏度(控制系统) 计算机科学 机器学习 滤波器(信号处理) 数据挖掘 特征选择 替代模型 模式识别(心理学) 工程类 采矿工程 岩土工程 计算机视觉 语言学 哲学 电子工程
作者
Yin Bo,Quansheng Liu,Xing Huang,Yucong Pan
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:124: 104448-104448 被引量:29
标识
DOI:10.1016/j.tust.2022.104448
摘要

In-time perception of changing geological conditions is crucial for safe and efficient TBM tunneling. Precisely detecting or predicting the rock mass qualities ahead of the tunnel face can forewarn the geological disasters (e.g., burst or squeezing behaviors of surrounding rock mass). A novel hybridization model based on CatBooost and Sequential Model-Based Optimization (SMBO) is proposed in this study. Firstly, a database incorporating 4464 samples acquired from the Songhua River Water Diversion Project is established using the capping method. Owing to SMBO’s different surrogate types (GP, RF, and GBRT) and performance validation, the comparisons of SMBO-CatBoost’s three types and other six hybridized models (SMBO-XGBoost, SMBO-AdaBoost, SMBO-RF, SMBO-SVM, SMBO-KNN, and SMBO-LR) are successively carried out. As a result, in terms of the optimization speed, performance, and sensitivity to poor geological conditions, SMBO(RF)-CatBoost is the most suitable model for rock mass class prediction; furthermore, it achieves the best performance ACC¯ = 0.9207 and F1¯ = 0.9178 among the seven hybridized models. Next, the scientific feature selection methods (i.e., filter, embedded) are used to reduce the model’s complexity (i.e., feature dimensions) step by step to increase the model’s on-site practicality. The determined ten influential features still can keep the model’s ACC¯ and F1¯ greater than 0.85, and only respectively declines 5.4% and 5.6% in contrast to the original performance. Subsequently, in order to explore the importance of the first-hand features and the second-hand features (i.e., composite features), a new method for more accurately calculating the rock mass boreability indices (regarded as the second-hand features) is proposed based on the big data at a relatively high sampling frequency of 1 Hz, this newly-proposed method could make these indices more of significance under the complex geological conditions. With the SHAP technique, the modified torque penetration index (TPI’) is more valuable than other second-hand and some first-hand features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
毛妹完成签到,获得积分10
刚刚
倾听阳光完成签到 ,获得积分10
刚刚
伟川周完成签到 ,获得积分10
1秒前
tong完成签到,获得积分10
1秒前
JABBA完成签到,获得积分10
1秒前
英俊亦巧完成签到,获得积分10
3秒前
左眼天堂完成签到,获得积分10
4秒前
卿莞尔完成签到 ,获得积分0
4秒前
朴实的河马完成签到,获得积分10
4秒前
sennialiu完成签到,获得积分10
4秒前
luckweb完成签到,获得积分10
4秒前
5秒前
李胖潘完成签到 ,获得积分10
5秒前
蝉鸣一夏发布了新的文献求助10
5秒前
姜友舜发布了新的文献求助10
5秒前
easton完成签到,获得积分10
6秒前
在水一方应助xh采纳,获得10
6秒前
luckweb发布了新的文献求助10
6秒前
肌肉猛男完成签到,获得积分10
7秒前
de完成签到,获得积分10
7秒前
jie发布了新的文献求助10
8秒前
aurevoir完成签到,获得积分10
8秒前
夏辞完成签到,获得积分10
9秒前
英俊的铭应助灰灰采纳,获得10
9秒前
7890733完成签到,获得积分10
9秒前
xukaixuan001完成签到,获得积分10
10秒前
10秒前
端庄的山蝶完成签到,获得积分10
11秒前
11秒前
zzz完成签到,获得积分10
12秒前
万能图书馆应助Lisztan采纳,获得10
12秒前
工艺员完成签到,获得积分10
12秒前
Akim应助张鑏采纳,获得30
12秒前
overThat完成签到,获得积分10
13秒前
SMART完成签到,获得积分10
13秒前
完美世界应助jin采纳,获得10
13秒前
自觉沛文完成签到,获得积分10
14秒前
wangyue完成签到 ,获得积分10
14秒前
边雨完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349