Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization

支持向量机 岩体分类 阿达布思 特征(语言学) 人工智能 灵敏度(控制系统) 计算机科学 机器学习 滤波器(信号处理) 数据挖掘 特征选择 替代模型 模式识别(心理学) 工程类 采矿工程 岩土工程 计算机视觉 语言学 哲学 电子工程
作者
Yin Bo,Quansheng Liu,Xing Huang,Yucong Pan
出处
期刊:Tunnelling and Underground Space Technology [Elsevier BV]
卷期号:124: 104448-104448 被引量:29
标识
DOI:10.1016/j.tust.2022.104448
摘要

In-time perception of changing geological conditions is crucial for safe and efficient TBM tunneling. Precisely detecting or predicting the rock mass qualities ahead of the tunnel face can forewarn the geological disasters (e.g., burst or squeezing behaviors of surrounding rock mass). A novel hybridization model based on CatBooost and Sequential Model-Based Optimization (SMBO) is proposed in this study. Firstly, a database incorporating 4464 samples acquired from the Songhua River Water Diversion Project is established using the capping method. Owing to SMBO’s different surrogate types (GP, RF, and GBRT) and performance validation, the comparisons of SMBO-CatBoost’s three types and other six hybridized models (SMBO-XGBoost, SMBO-AdaBoost, SMBO-RF, SMBO-SVM, SMBO-KNN, and SMBO-LR) are successively carried out. As a result, in terms of the optimization speed, performance, and sensitivity to poor geological conditions, SMBO(RF)-CatBoost is the most suitable model for rock mass class prediction; furthermore, it achieves the best performance ACC¯ = 0.9207 and F1¯ = 0.9178 among the seven hybridized models. Next, the scientific feature selection methods (i.e., filter, embedded) are used to reduce the model’s complexity (i.e., feature dimensions) step by step to increase the model’s on-site practicality. The determined ten influential features still can keep the model’s ACC¯ and F1¯ greater than 0.85, and only respectively declines 5.4% and 5.6% in contrast to the original performance. Subsequently, in order to explore the importance of the first-hand features and the second-hand features (i.e., composite features), a new method for more accurately calculating the rock mass boreability indices (regarded as the second-hand features) is proposed based on the big data at a relatively high sampling frequency of 1 Hz, this newly-proposed method could make these indices more of significance under the complex geological conditions. With the SHAP technique, the modified torque penetration index (TPI’) is more valuable than other second-hand and some first-hand features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月宸发布了新的文献求助10
刚刚
雨碎寒江发布了新的文献求助10
刚刚
科研通AI2S应助Rui_Rui采纳,获得10
1秒前
华仔应助摆烂包菜采纳,获得10
2秒前
3秒前
4秒前
乔钰涵发布了新的文献求助10
5秒前
李健的粉丝团团长应助bing采纳,获得10
5秒前
5秒前
斯文败类应助月宸采纳,获得10
5秒前
hhh完成签到,获得积分20
7秒前
调皮芫发布了新的文献求助10
9秒前
小小小发布了新的文献求助10
9秒前
顾矜应助王明浩采纳,获得30
10秒前
10秒前
Jasper应助紧张的毛衣采纳,获得10
10秒前
12秒前
12秒前
陆66完成签到 ,获得积分10
13秒前
14秒前
在水一方应助调皮芫采纳,获得10
15秒前
bing发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
19秒前
19秒前
mwl发布了新的文献求助10
21秒前
dui发布了新的文献求助10
21秒前
zydd完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助150
21秒前
23秒前
23秒前
RR发布了新的文献求助10
24秒前
25秒前
崔懿龍发布了新的文献求助10
25秒前
26秒前
希望天下0贩的0应助小渔采纳,获得10
27秒前
27秒前
牛马发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950925
求助须知:如何正确求助?哪些是违规求助? 4213683
关于积分的说明 13105422
捐赠科研通 3995528
什么是DOI,文献DOI怎么找? 2186939
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115421