Accelerate treatment planning process using deep learning generated fluence maps for cervical cancer radiation therapy

放射治疗计划 计算机科学 质量保证 医学物理学 放射治疗 深度学习 人工神经网络 人工智能 过程(计算) 核医学 医学 放射科 外部质量评估 病理 操作系统
作者
Zengtai Yuan,Yuxiang Wang,Pan Hu,Duoer Zhang,Bing Yan,Hsiao‐Ming Lu,Hongyan Zhang,Yidong Yang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (4): 2631-2641 被引量:16
标识
DOI:10.1002/mp.15530
摘要

This study aims to develop a deep learning method that skips the time-consuming inverse optimization process for automatic generation of machine-deliverable intensity-modulated radiation therapy (IMRT) plans.Ninety cervical cancer clinical IMRT plans were collected to train a two-stage convolution neural network, of which 66 plans were assigned for training, 11 for validation, and 13 for test. The neural network took patients' computed tomography (CT) anatomy as the input and predicted the fluence map for each radiation beam. The predicted fluence maps were then imported into a treatment planning system and converted to multileaf collimators motion sequences. The automatic plan was evaluated against its corresponding clinical plan, and its machine deliverability was validated by patient-specific IMRT quality assurance (QA).There were no significant differences in dose parameters between automatic and clinical plans for all 13 test patients, indicating a good prediction of fluence maps and a decent quality of automatic plans. The average dice similarity coefficient of isodose volumes encompassed by 0%-100% isodose lines ranged from 0.94 to 1. In patient-specific IMRT QA, the mean gamma passing rate of automatic plans achieved 99.5% under 3%/3 mm criteria, and 97.3% under 2%/2 mm criteria, with a low dose threshold of 10%.The proposed deep learning framework can produce machine-deliverable IMRT plans with quality similar to the clinical plans in the test set. It skips the inverse plan optimization process and provides an effective and efficient method to accelerate treatment planning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助房天川采纳,获得10
1秒前
conlensce完成签到,获得积分10
1秒前
小白杨完成签到,获得积分10
1秒前
1秒前
学fei了吗完成签到,获得积分10
1秒前
隐形曼青应助sci_25采纳,获得10
1秒前
hai完成签到,获得积分10
2秒前
努力搞科研完成签到,获得积分10
2秒前
陈博士完成签到,获得积分10
2秒前
脑洞疼应助victor28采纳,获得10
3秒前
bc完成签到,获得积分10
3秒前
充电宝应助ap采纳,获得10
4秒前
希望天下0贩的0应助Wang采纳,获得10
4秒前
v啦啦啦啦发布了新的文献求助10
5秒前
dghcmh发布了新的文献求助10
5秒前
灰灰喵完成签到 ,获得积分10
5秒前
吴佳俊发布了新的文献求助10
6秒前
三火完成签到,获得积分10
6秒前
Owen应助快乐保温杯采纳,获得10
7秒前
NexusExplorer应助年轻的白梦采纳,获得10
7秒前
微澜完成签到,获得积分10
7秒前
机灵夏云完成签到,获得积分10
7秒前
翁雁丝完成签到,获得积分10
8秒前
顺心一一完成签到 ,获得积分10
8秒前
cdercder应助houfei采纳,获得20
9秒前
所所应助houfei采纳,获得10
9秒前
9秒前
123发布了新的文献求助10
9秒前
科研小白完成签到 ,获得积分10
10秒前
Only完成签到 ,获得积分10
10秒前
10秒前
11秒前
标致幼菱完成签到,获得积分20
11秒前
kone应助卜卜脆采纳,获得10
11秒前
小白应助Helium采纳,获得20
11秒前
v啦啦啦啦完成签到,获得积分10
11秒前
yeah发布了新的文献求助10
12秒前
Emma完成签到,获得积分10
12秒前
12秒前
迷路迎南完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700765
求助须知:如何正确求助?哪些是违规求助? 3251047
关于积分的说明 9872817
捐赠科研通 2963115
什么是DOI,文献DOI怎么找? 1624972
邀请新用户注册赠送积分活动 769625
科研通“疑难数据库(出版商)”最低求助积分说明 742423