Towards an universal artificial synapse using MXene-PZT based ferroelectric memristor

记忆电阻器 材料科学 铁电性 神经形态工程学 电阻随机存取存储器 光电子学 非易失性存储器 电压 纳米技术 电子工程 计算机科学 人工神经网络 电气工程 人工智能 电介质 工程类
作者
Miaocheng Zhang,Qi Qin,Xingyu Chen,Runze Tang,Aoze Han,Suhao Yao,Ronghui Dan,Qiang Wang,Yu Wang,Hong Gu,Hao Zhang,Ertao Hu,Lei Wang,Jianguang Xu,Yi Tong
出处
期刊:Ceramics International [Elsevier BV]
卷期号:48 (11): 16263-16272 被引量:17
标识
DOI:10.1016/j.ceramint.2022.02.175
摘要

To address the challenge of memory wall, memristor is a breakthrough for the hardware realization of computation in memory (CIM). As a promising candidate for the resistive-switching layer of memristor, ferroelectric material has recently received extensive attention. However, the performance of ferroelectric memristors is limited by rigid device structure based on metal/ferroelectric material interface. In this work, the hybrid ferroelectric Cu/MXene/PZT memristor has been firstly demonstrated. Two-dimensional (2D) material Ti3C2 MXene was synthesized and inserted into traditional PZT (PbZr0.52Ti0.48O3) ferroelectric memristors (Cu/PZT/Pt) for performance enhancement. By comparison, the ferroelectric devices based on Cu/Ti3C2/PZT/Pt exhibit enhanced performance, i. e., lower switching voltage, lower power consumption, reproducing RS behaviors, and higher switching ratio (106%). The effect of the insertion of the MXene layer has been investigated by theoretical analysis about switching mechanisms of the devices and first-principles calculations of the Ti3C2/PZT atomic structure. Additionally, functions of analogy biological synapse, i. e., long-term potentiation (LTP), long-term depression (LTD), spike-timing-dependent plasticity (STDP), and paired-pulse facilitation (PPF) have been mimicked using these MXene-PZT based devices. Based on synaptic behaviors in MXene-PZT based memristors, the learning accuracy of pattern recognition with handwritten data can reach 95.13%. Our results are expected to inspire the development of MXene for performance enhancement of ferroelectric memristors and their applications in neuromorphic computing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小f完成签到,获得积分10
刚刚
皮崇知发布了新的文献求助10
刚刚
CWT发布了新的文献求助10
1秒前
Jia发布了新的文献求助10
1秒前
2秒前
CC完成签到,获得积分10
2秒前
3秒前
3秒前
酷波er应助12345采纳,获得10
3秒前
叶山柳完成签到,获得积分20
6秒前
6秒前
Jia关闭了Jia文献求助
6秒前
羊羔蓉发布了新的文献求助10
6秒前
欧阳正义发布了新的文献求助10
9秒前
Orange应助滑腻腻的小鱼采纳,获得10
9秒前
传奇3应助123采纳,获得10
10秒前
zhanglongquan完成签到,获得积分20
11秒前
keira发布了新的文献求助30
11秒前
11秒前
12秒前
aaaaaa发布了新的文献求助10
15秒前
JamesPei应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
ED应助科研通管家采纳,获得10
17秒前
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
17秒前
李健应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
ED应助科研通管家采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432