记忆电阻器
材料科学
铁电性
神经形态工程学
电阻随机存取存储器
光电子学
非易失性存储器
电压
纳米技术
电子工程
计算机科学
人工神经网络
电气工程
人工智能
电介质
工程类
作者
Miaocheng Zhang,Qi Qin,Xingyu Chen,Runze Tang,Aoze Han,Suhao Yao,Ronghui Dan,Qiang Wang,Yu Wang,Hong Gu,Hao Zhang,Ertao Hu,Lei Wang,Jianguang Xu,Yi Tong
标识
DOI:10.1016/j.ceramint.2022.02.175
摘要
To address the challenge of memory wall, memristor is a breakthrough for the hardware realization of computation in memory (CIM). As a promising candidate for the resistive-switching layer of memristor, ferroelectric material has recently received extensive attention. However, the performance of ferroelectric memristors is limited by rigid device structure based on metal/ferroelectric material interface. In this work, the hybrid ferroelectric Cu/MXene/PZT memristor has been firstly demonstrated. Two-dimensional (2D) material Ti3C2 MXene was synthesized and inserted into traditional PZT (PbZr0.52Ti0.48O3) ferroelectric memristors (Cu/PZT/Pt) for performance enhancement. By comparison, the ferroelectric devices based on Cu/Ti3C2/PZT/Pt exhibit enhanced performance, i. e., lower switching voltage, lower power consumption, reproducing RS behaviors, and higher switching ratio (106%). The effect of the insertion of the MXene layer has been investigated by theoretical analysis about switching mechanisms of the devices and first-principles calculations of the Ti3C2/PZT atomic structure. Additionally, functions of analogy biological synapse, i. e., long-term potentiation (LTP), long-term depression (LTD), spike-timing-dependent plasticity (STDP), and paired-pulse facilitation (PPF) have been mimicked using these MXene-PZT based devices. Based on synaptic behaviors in MXene-PZT based memristors, the learning accuracy of pattern recognition with handwritten data can reach 95.13%. Our results are expected to inspire the development of MXene for performance enhancement of ferroelectric memristors and their applications in neuromorphic computing systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI