Meta Graph Transformer: A Novel Framework for Spatial–Temporal Traffic Prediction

计算机科学 变压器 人工智能 图形 机器学习 数据挖掘 理论计算机科学 工程类 电气工程 电压
作者
Ye Xue,Shen Fang,Fang Sun,Chunxia Zhang,Shiming Xiang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:491: 544-563 被引量:78
标识
DOI:10.1016/j.neucom.2021.12.033
摘要

Accurate traffic prediction is critical for enhancing the performance of intelligent transportation systems. The key challenge to this task is how to properly model the complex dynamics of traffic while respecting and exploiting both spatial and temporal heterogeneity in data. This paper proposes a novel framework called Meta Graph Transformer (MGT) to address this problem. The MGT framework is a generalization of the original transformer, which is used to model vector sequences in natural language processing. Specifically, MGT has an encoder-decoder architecture. The encoder is responsible for encoding historical traffic data into intermediate representations, while the decoder predicts future traffic states autoregressively. The main building blocks of MGT are three types of attention layers named Temporal Self-Attention (TSA), Spatial Self-Attention (SSA), and Temporal Encoder-Decoder Attention (TEDA), respectively. They all have a multi-head structure. TSAs and SSAs are employed by both the encoder and decoder to capture temporal and spatial correlations. TEDAs are employed by the decoder, allowing every position in the decoder to attend all positions in the input sequence temporally. By leveraging multiple graphs, SSA can conduct sparse spatial attention with various inductive biases. To facilitate the model’s awareness of temporal and spatial conditions, Spatial–Temporal Embeddings (STEs) are learned from external attributes, which are composed of temporal attributes (e.g. sequential order, time of day) and spatial attributes (e.g. Laplacian eigenmaps). These embeddings are then utilized by all the attention layers via meta-learning, hence endowing these layers with Spatial–Temporal Heterogeneity-Aware (STHA) properties. Experiments on three real-world traffic datasets demonstrate the superiority of our model over several state-of-the-art methods. Our code and data are available at ( http://github.com/lonicera-yx/MGT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的荷兰人完成签到,获得积分10
刚刚
刚刚
Ail完成签到,获得积分10
刚刚
卢卢发布了新的文献求助10
1秒前
顾矜应助wergou采纳,获得10
1秒前
1秒前
123456发布了新的文献求助10
1秒前
谢谢李发布了新的文献求助10
2秒前
2秒前
2秒前
咩咩应助vocrious采纳,获得10
3秒前
3秒前
3秒前
4秒前
煦暖应助科研通管家采纳,获得10
4秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
樱栀发布了新的文献求助10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
山河发布了新的文献求助10
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
汉堡包应助一个可爱的人采纳,获得10
7秒前
科研通AI5应助球球采纳,获得10
7秒前
卜钊发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
MIAAAO发布了新的文献求助10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646