Meta Graph Transformer: A Novel Framework for Spatial–Temporal Traffic Prediction

计算机科学 编码器 变压器 人工智能 空间分析 图形 机器学习 模式识别(心理学) 理论计算机科学 数学 量子力学 统计 操作系统 物理 电压
作者
Ye Xue,Shen Fang,Fang Sun,Chunxia Zhang,Shiming Xiang
出处
期刊:Neurocomputing [Elsevier]
卷期号:491: 544-563 被引量:50
标识
DOI:10.1016/j.neucom.2021.12.033
摘要

Accurate traffic prediction is critical for enhancing the performance of intelligent transportation systems. The key challenge to this task is how to properly model the complex dynamics of traffic while respecting and exploiting both spatial and temporal heterogeneity in data. This paper proposes a novel framework called Meta Graph Transformer (MGT) to address this problem. The MGT framework is a generalization of the original transformer, which is used to model vector sequences in natural language processing. Specifically, MGT has an encoder-decoder architecture. The encoder is responsible for encoding historical traffic data into intermediate representations, while the decoder predicts future traffic states autoregressively. The main building blocks of MGT are three types of attention layers named Temporal Self-Attention (TSA), Spatial Self-Attention (SSA), and Temporal Encoder-Decoder Attention (TEDA), respectively. They all have a multi-head structure. TSAs and SSAs are employed by both the encoder and decoder to capture temporal and spatial correlations. TEDAs are employed by the decoder, allowing every position in the decoder to attend all positions in the input sequence temporally. By leveraging multiple graphs, SSA can conduct sparse spatial attention with various inductive biases. To facilitate the model’s awareness of temporal and spatial conditions, Spatial–Temporal Embeddings (STEs) are learned from external attributes, which are composed of temporal attributes (e.g. sequential order, time of day) and spatial attributes (e.g. Laplacian eigenmaps). These embeddings are then utilized by all the attention layers via meta-learning, hence endowing these layers with Spatial–Temporal Heterogeneity-Aware (STHA) properties. Experiments on three real-world traffic datasets demonstrate the superiority of our model over several state-of-the-art methods. Our code and data are available at ( http://github.com/lonicera-yx/MGT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的寻云完成签到,获得积分10
1秒前
科研通AI2S应助zh采纳,获得10
2秒前
哎呀呀的小胖胖应助Zyyyh采纳,获得10
2秒前
馨馨发布了新的文献求助10
3秒前
4秒前
Orange应助星禾吾采纳,获得10
5秒前
6秒前
幽默的友灵完成签到,获得积分10
8秒前
Lucas应助czb666采纳,获得10
10秒前
10秒前
chloe完成签到,获得积分10
11秒前
He完成签到,获得积分10
13秒前
团装完成签到 ,获得积分0
14秒前
lhz发布了新的文献求助10
18秒前
月潮共生完成签到 ,获得积分10
19秒前
任伟超完成签到,获得积分10
19秒前
20秒前
爱笑完成签到,获得积分10
20秒前
万能图书馆应助柴三岁采纳,获得10
20秒前
22秒前
www完成签到,获得积分10
22秒前
Chloe完成签到,获得积分10
23秒前
顾白凡完成签到,获得积分10
24秒前
24秒前
nz完成签到,获得积分10
25秒前
whisper发布了新的文献求助10
26秒前
DimYoung完成签到,获得积分10
26秒前
nemo711完成签到,获得积分10
27秒前
tina3058发布了新的文献求助10
28秒前
科研小狗完成签到 ,获得积分10
30秒前
Maria完成签到,获得积分10
33秒前
刻苦的兔子完成签到,获得积分10
36秒前
领导范儿应助直率芷巧采纳,获得10
39秒前
一支布洛芬关注了科研通微信公众号
39秒前
努力的小杜应助ty心明亮采纳,获得10
40秒前
顾矜应助个性的汲采纳,获得10
41秒前
zh完成签到,获得积分10
42秒前
44秒前
zho发布了新的文献求助10
45秒前
46秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350943
求助须知:如何正确求助?哪些是违规求助? 2976496
关于积分的说明 8675277
捐赠科研通 2657650
什么是DOI,文献DOI怎么找? 1455181
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664225