Meta Graph Transformer: A Novel Framework for Spatial–Temporal Traffic Prediction

计算机科学 变压器 人工智能 图形 机器学习 数据挖掘 理论计算机科学 工程类 电气工程 电压
作者
Ye Xue,Shen Fang,Fang Sun,Chunxia Zhang,Shiming Xiang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:491: 544-563 被引量:87
标识
DOI:10.1016/j.neucom.2021.12.033
摘要

Accurate traffic prediction is critical for enhancing the performance of intelligent transportation systems. The key challenge to this task is how to properly model the complex dynamics of traffic while respecting and exploiting both spatial and temporal heterogeneity in data. This paper proposes a novel framework called Meta Graph Transformer (MGT) to address this problem. The MGT framework is a generalization of the original transformer, which is used to model vector sequences in natural language processing. Specifically, MGT has an encoder-decoder architecture. The encoder is responsible for encoding historical traffic data into intermediate representations, while the decoder predicts future traffic states autoregressively. The main building blocks of MGT are three types of attention layers named Temporal Self-Attention (TSA), Spatial Self-Attention (SSA), and Temporal Encoder-Decoder Attention (TEDA), respectively. They all have a multi-head structure. TSAs and SSAs are employed by both the encoder and decoder to capture temporal and spatial correlations. TEDAs are employed by the decoder, allowing every position in the decoder to attend all positions in the input sequence temporally. By leveraging multiple graphs, SSA can conduct sparse spatial attention with various inductive biases. To facilitate the model’s awareness of temporal and spatial conditions, Spatial–Temporal Embeddings (STEs) are learned from external attributes, which are composed of temporal attributes (e.g. sequential order, time of day) and spatial attributes (e.g. Laplacian eigenmaps). These embeddings are then utilized by all the attention layers via meta-learning, hence endowing these layers with Spatial–Temporal Heterogeneity-Aware (STHA) properties. Experiments on three real-world traffic datasets demonstrate the superiority of our model over several state-of-the-art methods. Our code and data are available at ( http://github.com/lonicera-yx/MGT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lee完成签到,获得积分10
刚刚
刚刚
刚刚
Dorren发布了新的文献求助10
1秒前
1秒前
左丘以云发布了新的文献求助20
1秒前
科研通AI5应助犹豫的绝悟采纳,获得30
1秒前
1秒前
1秒前
香蕉觅云应助我叫逗你玩采纳,获得10
1秒前
完美世界应助liangzhao采纳,获得30
1秒前
fujikaze完成签到 ,获得积分10
2秒前
言非离发布了新的文献求助150
2秒前
2秒前
Owen应助求思东观令采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
2秒前
2秒前
Kate发布了新的文献求助10
3秒前
寂寞的迎天完成签到,获得积分10
3秒前
LXx发布了新的文献求助10
3秒前
CipherSage应助玉洁采纳,获得10
3秒前
甜美帅哥完成签到,获得积分10
3秒前
灰灰成长中完成签到,获得积分10
3秒前
3秒前
鲁鲁完成签到,获得积分20
3秒前
4秒前
lanminghao完成签到 ,获得积分10
4秒前
5秒前
5秒前
zhaopen完成签到,获得积分20
5秒前
高大山彤完成签到,获得积分10
5秒前
5秒前
慕青应助魏菁菁采纳,获得10
5秒前
5秒前
清韵微风完成签到,获得积分10
6秒前
RATHER发布了新的文献求助10
6秒前
6秒前
阿幽发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569