Meta Graph Transformer: A Novel Framework for Spatial–Temporal Traffic Prediction

计算机科学 变压器 人工智能 图形 机器学习 数据挖掘 理论计算机科学 工程类 电气工程 电压
作者
Ye Xue,Shen Fang,Fang Sun,Chunxia Zhang,Shiming Xiang
出处
期刊:Neurocomputing [Elsevier]
卷期号:491: 544-563 被引量:87
标识
DOI:10.1016/j.neucom.2021.12.033
摘要

Accurate traffic prediction is critical for enhancing the performance of intelligent transportation systems. The key challenge to this task is how to properly model the complex dynamics of traffic while respecting and exploiting both spatial and temporal heterogeneity in data. This paper proposes a novel framework called Meta Graph Transformer (MGT) to address this problem. The MGT framework is a generalization of the original transformer, which is used to model vector sequences in natural language processing. Specifically, MGT has an encoder-decoder architecture. The encoder is responsible for encoding historical traffic data into intermediate representations, while the decoder predicts future traffic states autoregressively. The main building blocks of MGT are three types of attention layers named Temporal Self-Attention (TSA), Spatial Self-Attention (SSA), and Temporal Encoder-Decoder Attention (TEDA), respectively. They all have a multi-head structure. TSAs and SSAs are employed by both the encoder and decoder to capture temporal and spatial correlations. TEDAs are employed by the decoder, allowing every position in the decoder to attend all positions in the input sequence temporally. By leveraging multiple graphs, SSA can conduct sparse spatial attention with various inductive biases. To facilitate the model’s awareness of temporal and spatial conditions, Spatial–Temporal Embeddings (STEs) are learned from external attributes, which are composed of temporal attributes (e.g. sequential order, time of day) and spatial attributes (e.g. Laplacian eigenmaps). These embeddings are then utilized by all the attention layers via meta-learning, hence endowing these layers with Spatial–Temporal Heterogeneity-Aware (STHA) properties. Experiments on three real-world traffic datasets demonstrate the superiority of our model over several state-of-the-art methods. Our code and data are available at ( http://github.com/lonicera-yx/MGT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰鸽舞完成签到 ,获得积分10
1秒前
MOD发布了新的文献求助10
1秒前
李诗越发布了新的文献求助10
2秒前
2秒前
殷勤的紫槐给tanzhengqiang的求助进行了留言
3秒前
星star完成签到 ,获得积分10
3秒前
sooo完成签到,获得积分10
5秒前
6秒前
8888发布了新的文献求助30
6秒前
一位科研苟完成签到,获得积分10
7秒前
7秒前
10秒前
gwfew完成签到,获得积分10
10秒前
隐形曼青应助Kriemhild采纳,获得10
11秒前
13秒前
ASHUN完成签到,获得积分10
13秒前
所所应助李哈哈采纳,获得10
15秒前
李健的小迷弟应助gwfew采纳,获得10
15秒前
Banana完成签到 ,获得积分10
15秒前
16秒前
魅雪霓完成签到,获得积分10
16秒前
网名还没想好完成签到,获得积分10
18秒前
19秒前
李诗越完成签到,获得积分10
19秒前
Julie完成签到 ,获得积分10
19秒前
21秒前
Kriemhild完成签到,获得积分10
22秒前
灯火完成签到,获得积分10
22秒前
jiachun发布了新的文献求助10
22秒前
辛菜头完成签到,获得积分10
24秒前
24秒前
24秒前
第一百零一个完成签到,获得积分10
26秒前
wang发布了新的文献求助10
26秒前
S.S发布了新的文献求助10
27秒前
芋泥波波完成签到,获得积分10
27秒前
硕心完成签到,获得积分10
28秒前
拓跋箴发布了新的文献求助10
28秒前
28秒前
29秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350006
求助须知:如何正确求助?哪些是违规求助? 4483602
关于积分的说明 13956475
捐赠科研通 4382822
什么是DOI,文献DOI怎么找? 2408004
邀请新用户注册赠送积分活动 1400684
关于科研通互助平台的介绍 1373963