Meta Graph Transformer: A Novel Framework for Spatial–Temporal Traffic Prediction

计算机科学 变压器 人工智能 图形 机器学习 数据挖掘 理论计算机科学 工程类 电气工程 电压
作者
Ye Xue,Shen Fang,Fang Sun,Chunxia Zhang,Shiming Xiang
出处
期刊:Neurocomputing [Elsevier]
卷期号:491: 544-563 被引量:87
标识
DOI:10.1016/j.neucom.2021.12.033
摘要

Accurate traffic prediction is critical for enhancing the performance of intelligent transportation systems. The key challenge to this task is how to properly model the complex dynamics of traffic while respecting and exploiting both spatial and temporal heterogeneity in data. This paper proposes a novel framework called Meta Graph Transformer (MGT) to address this problem. The MGT framework is a generalization of the original transformer, which is used to model vector sequences in natural language processing. Specifically, MGT has an encoder-decoder architecture. The encoder is responsible for encoding historical traffic data into intermediate representations, while the decoder predicts future traffic states autoregressively. The main building blocks of MGT are three types of attention layers named Temporal Self-Attention (TSA), Spatial Self-Attention (SSA), and Temporal Encoder-Decoder Attention (TEDA), respectively. They all have a multi-head structure. TSAs and SSAs are employed by both the encoder and decoder to capture temporal and spatial correlations. TEDAs are employed by the decoder, allowing every position in the decoder to attend all positions in the input sequence temporally. By leveraging multiple graphs, SSA can conduct sparse spatial attention with various inductive biases. To facilitate the model’s awareness of temporal and spatial conditions, Spatial–Temporal Embeddings (STEs) are learned from external attributes, which are composed of temporal attributes (e.g. sequential order, time of day) and spatial attributes (e.g. Laplacian eigenmaps). These embeddings are then utilized by all the attention layers via meta-learning, hence endowing these layers with Spatial–Temporal Heterogeneity-Aware (STHA) properties. Experiments on three real-world traffic datasets demonstrate the superiority of our model over several state-of-the-art methods. Our code and data are available at ( http://github.com/lonicera-yx/MGT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈应助简简采纳,获得10
刚刚
刘雨森完成签到 ,获得积分10
1秒前
欧阳大娘完成签到,获得积分10
1秒前
song完成签到 ,获得积分10
1秒前
111yu发布了新的文献求助10
2秒前
2秒前
Chere20200628完成签到 ,获得积分10
2秒前
3秒前
打打应助傲娇的凝云采纳,获得10
3秒前
Barton完成签到,获得积分10
5秒前
风笛完成签到 ,获得积分10
5秒前
111发布了新的文献求助10
7秒前
赖雅绿完成签到,获得积分0
11秒前
几几完成签到,获得积分10
11秒前
科研通AI2S应助乔沃维奇采纳,获得10
12秒前
14秒前
漠雨寒灯发布了新的文献求助10
19秒前
修辛完成签到 ,获得积分10
19秒前
7298682发布了新的文献求助10
20秒前
YYY完成签到,获得积分10
22秒前
111完成签到,获得积分10
23秒前
123456qi完成签到,获得积分10
24秒前
25秒前
zoey完成签到,获得积分20
26秒前
LZG完成签到,获得积分10
28秒前
开朗的大树完成签到,获得积分10
30秒前
小瓜在吗发布了新的文献求助10
31秒前
32秒前
旰旰旰完成签到,获得积分10
32秒前
何浏亮完成签到,获得积分10
33秒前
健忘鞋垫完成签到,获得积分10
33秒前
34秒前
朴素鑫完成签到,获得积分10
35秒前
彩色靖儿完成签到 ,获得积分10
35秒前
zoey发布了新的文献求助10
36秒前
忆仙姿完成签到,获得积分10
36秒前
lucky完成签到,获得积分10
37秒前
阿梓完成签到,获得积分10
40秒前
fd163c完成签到,获得积分10
40秒前
xzz完成签到,获得积分10
42秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378975
求助须知:如何正确求助?哪些是违规求助? 4503349
关于积分的说明 14015585
捐赠科研通 4412079
什么是DOI,文献DOI怎么找? 2423655
邀请新用户注册赠送积分活动 1416558
关于科研通互助平台的介绍 1394065