清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AI aided analysis on saliva crystallization of pregnant women for accurate estimation of delivery date and fetal status.

医学 产科 怀孕 唾液
作者
Zhou-Xuan Li,Yue-Ming Zha,Guang-Yun Jiang,Yao-Xiong Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/jbhi.2021.3135534
摘要

Saliva contains similar molecular components to serum. Analysis of saliva can provide important diagnostic information about the body. Here we report an artificial intelligence (AI) aided home-based method that can let pregnant women perform daily monitoring on their pregnant status and accurate prediction on their delivery date by the pattern analysis of their salivary crystals. The method was developed based on the information obtained from our investigation on the saliva samples of 170 pregnant women about the correlation of the salivary crystal pattern with pregnant age and fetal status. It demonstrated that the patterns of salivary crystallization could act as indicators of the pregnant age, fetal state, and some medical conditions of pregnant women. On this basis, with the aid of AI recognition and analysis of the fractal dimension and some characteristic crystals in the salivary crystallization, we performed estimation on the delivery date in both quantitative and qualitative manners. The accuracy of the prediction on 15 pregnant women was satisfactory: 100 % delivering in the predicted week, 93.3 % within the estimated three days, and 86.7 % on the day as the prediction. We also developed a simple smartphone-based AI-aided salivary crystal imaging and analysis device as an auxiliary means to let pregnant women monitor their fetal status daily at home and predict their delivery date with adequate accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
活力以冬完成签到,获得积分10
21秒前
31秒前
42秒前
ly普鲁卡因完成签到,获得积分10
42秒前
46秒前
藏续发布了新的文献求助10
48秒前
49秒前
57秒前
59秒前
1分钟前
行难路发布了新的文献求助10
1分钟前
1分钟前
吗喽完成签到,获得积分10
1分钟前
吗喽发布了新的文献求助10
1分钟前
1分钟前
naczx完成签到,获得积分10
1分钟前
1分钟前
JamesPei应助吗喽采纳,获得10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
1分钟前
1分钟前
2分钟前
jh完成签到 ,获得积分10
2分钟前
2分钟前
段誉完成签到 ,获得积分10
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
beihaik完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
灯露发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
松松完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596843
求助须知:如何正确求助?哪些是违规求助? 4008610
关于积分的说明 12409359
捐赠科研通 3687707
什么是DOI,文献DOI怎么找? 2032586
邀请新用户注册赠送积分活动 1065848
科研通“疑难数据库(出版商)”最低求助积分说明 951129