AI aided analysis on saliva crystallization of pregnant women for accurate estimation of delivery date and fetal status.

医学 产科 怀孕 唾液
作者
Zhou-Xuan Li,Yue-Ming Zha,Guang-Yun Jiang,Yao-Xiong Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/jbhi.2021.3135534
摘要

Saliva contains similar molecular components to serum. Analysis of saliva can provide important diagnostic information about the body. Here we report an artificial intelligence (AI) aided home-based method that can let pregnant women perform daily monitoring on their pregnant status and accurate prediction on their delivery date by the pattern analysis of their salivary crystals. The method was developed based on the information obtained from our investigation on the saliva samples of 170 pregnant women about the correlation of the salivary crystal pattern with pregnant age and fetal status. It demonstrated that the patterns of salivary crystallization could act as indicators of the pregnant age, fetal state, and some medical conditions of pregnant women. On this basis, with the aid of AI recognition and analysis of the fractal dimension and some characteristic crystals in the salivary crystallization, we performed estimation on the delivery date in both quantitative and qualitative manners. The accuracy of the prediction on 15 pregnant women was satisfactory: 100 % delivering in the predicted week, 93.3 % within the estimated three days, and 86.7 % on the day as the prediction. We also developed a simple smartphone-based AI-aided salivary crystal imaging and analysis device as an auxiliary means to let pregnant women monitor their fetal status daily at home and predict their delivery date with adequate accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰发布了新的文献求助10
刚刚
1秒前
1秒前
李小胖完成签到,获得积分10
1秒前
娷静完成签到 ,获得积分10
2秒前
lzc发布了新的文献求助10
2秒前
2秒前
方方发布了新的文献求助10
2秒前
ywy发布了新的文献求助10
2秒前
Gray发布了新的文献求助30
3秒前
洞两发布了新的文献求助10
3秒前
所所应助7777采纳,获得10
4秒前
xiaoyuan完成签到,获得积分10
4秒前
显隐发布了新的文献求助10
4秒前
小华发布了新的文献求助10
4秒前
天天快乐应助现代子默采纳,获得10
4秒前
显隐发布了新的文献求助10
5秒前
5秒前
5秒前
安安完成签到,获得积分10
5秒前
6秒前
显隐发布了新的文献求助10
6秒前
显隐发布了新的文献求助10
6秒前
7秒前
7秒前
孤独的猕猴桃完成签到 ,获得积分10
9秒前
动听白秋完成签到 ,获得积分10
9秒前
诚心淇发布了新的文献求助10
9秒前
李博士发布了新的文献求助10
9秒前
11秒前
11秒前
11秒前
12秒前
高兴晓丝发布了新的文献求助10
12秒前
13秒前
13秒前
不安以寒发布了新的文献求助10
13秒前
科苹果发布了新的文献求助20
13秒前
王思聪发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352218
求助须知:如何正确求助?哪些是违规求助? 4485082
关于积分的说明 13961728
捐赠科研通 4384899
什么是DOI,文献DOI怎么找? 2409213
邀请新用户注册赠送积分活动 1401676
关于科研通互助平台的介绍 1375225