Questions Classification Based on Revised Bloom's Taxonomy Cognitive Level using Naive Bayes and Support Vector Machine

过采样 朴素贝叶斯分类器 人工智能 机器学习 计算机科学 分类学(生物学) 支持向量机 布鲁姆分类学 认知 心理学 计算机网络 植物 生物 神经科学 带宽(计算)
作者
Annisa Syafarani Callista,Oktariani Nurul Pratiwi,Edi Sutoyo
标识
DOI:10.1109/ic2ie53219.2021.9649187
摘要

Education is an essential aspect in building the social value and norm to produce individuals who can think in high order thinking through learning and teaching activities. As technology keeps growing, an online learning platform has emerged. This platform is called e-Learning. e-Learning allows teachers to save many questions into the e-Learning question bank. However, these questions need to be reviewed so the questions can be matched with the achievement of competence. One educational identification standard that is often to improve the quality of the questions is Bloom's Taxonomy. Bloom's Taxonomy was created in 1956 and revised in 2001. This study compares the performance of the Support Vector Machine and Naïve Bayes algorithms to classify quiz questions based on the cognitive level of Revised Bloom's Taxonomy. In this study, the dataset received two treatments in handling the imbalanced class. One dataset is using SMOTE method, and one another is not using any oversampling methods. The result shows that classification with oversampling datasets had better results than those without oversampling. The Support Vector Machine algorithm with SMOTE has the highest accuracy of 98%, rather than the Naïve Bayes algorithm with SMOTE has an accuracy of 91%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助LUZIYI采纳,获得10
刚刚
木悠完成签到,获得积分10
刚刚
1秒前
1秒前
向会妍发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
李健应助Qyyy采纳,获得10
3秒前
3秒前
4秒前
Murphy_H完成签到,获得积分10
4秒前
万能图书馆应助赵云采纳,获得30
4秒前
我是老大应助生动的踏歌采纳,获得10
4秒前
所所应助整齐冬瓜采纳,获得10
4秒前
桐桐应助南枝采纳,获得10
4秒前
zzw发布了新的文献求助10
5秒前
缥缈立果完成签到,获得积分10
5秒前
Libgenxxxx完成签到,获得积分10
5秒前
orixero应助会武功的阿吉采纳,获得10
6秒前
cxlhzq发布了新的文献求助10
6秒前
Xenia完成签到,获得积分10
6秒前
要开心吖发布了新的文献求助10
6秒前
科目三应助强健的电源采纳,获得10
7秒前
乾清宫喝奶茶完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
科研通AI2S应助DJ想吃饭了采纳,获得10
8秒前
Hw应助周末万岁采纳,获得10
9秒前
光亮友安发布了新的文献求助10
10秒前
11秒前
ATom发布了新的文献求助30
11秒前
12秒前
haha发布了新的文献求助10
12秒前
所所应助哈哈哈哈哈采纳,获得10
12秒前
tomoe发布了新的文献求助10
12秒前
zsy完成签到,获得积分20
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144703
求助须知:如何正确求助?哪些是违规求助? 2796148
关于积分的说明 7818215
捐赠科研通 2452316
什么是DOI,文献DOI怎么找? 1304935
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449