MoleGuLAR: Molecule Generation Using Reinforcement Learning with Alternating Rewards

强化学习 计算机科学 梳理 人工神经网络 人工智能 机器学习 材料科学 复合材料
作者
Manan Goel,Shampa Raghunathan,Siddhartha Laghuvarapu,U. Deva Priyakumar
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:61 (12): 5815-5826 被引量:33
标识
DOI:10.1021/acs.jcim.1c01341
摘要

The design of new inhibitors for novel targets is a very important problem especially in the current scenario with the world being plagued by COVID-19. Conventional approaches such as high-throughput virtual screening require extensive combing through existing data sets in the hope of finding possible matches. In this study, we propose a computational strategy for de novo generation of molecules with high binding affinities to the specified target and other desirable properties for druglike molecules using reinforcement learning. A deep generative model built using a stack-augmented recurrent neural network initially trained to generate druglike molecules is optimized using reinforcement learning to start generating molecules with desirable properties like LogP, quantitative estimate of drug likeliness, topological polar surface area, and hydration free energy along with the binding affinity. For multiobjective optimization, we have devised a novel strategy in which the property being used to calculate the reward is changed periodically. In comparison to the conventional approach of taking a weighted sum of all rewards, this strategy shows an enhanced ability to generate a significantly higher number of molecules with desirable properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助坚定的代云采纳,获得10
1秒前
姚卓成发布了新的文献求助20
2秒前
Hello应助111采纳,获得10
2秒前
星河在眼里完成签到,获得积分10
3秒前
4秒前
原点完成签到,获得积分10
4秒前
4秒前
Zz发布了新的文献求助20
5秒前
heidi发布了新的文献求助10
7秒前
思源应助0000采纳,获得10
7秒前
8秒前
进取拼搏发布了新的文献求助10
9秒前
科研顺利完成签到,获得积分10
9秒前
清秀的凝荷完成签到,获得积分10
10秒前
10秒前
11秒前
14秒前
从容的谷云完成签到,获得积分10
15秒前
不语发布了新的文献求助120
15秒前
今后应助heidi采纳,获得10
17秒前
18秒前
18秒前
陈玉婷完成签到,获得积分10
19秒前
小葡萄发布了新的文献求助10
19秒前
爱听歌的紫菜完成签到,获得积分10
22秒前
22秒前
科目三应助欣祺采纳,获得10
22秒前
CodeCraft应助东郭寻凝采纳,获得10
23秒前
24秒前
爱吃困困饺子完成签到,获得积分10
25秒前
26秒前
26秒前
义气完成签到 ,获得积分10
28秒前
29秒前
29秒前
29秒前
29秒前
30秒前
30秒前
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483894
求助须知:如何正确求助?哪些是违规求助? 3073070
关于积分的说明 9129389
捐赠科研通 2764810
什么是DOI,文献DOI怎么找? 1517349
邀请新用户注册赠送积分活动 702089
科研通“疑难数据库(出版商)”最低求助积分说明 700954