Structure deformation and curvature sensing of PIEZO1 in lipid membranes

生物物理学 压电1 脂质双层 门控 离子通道 小泡 化学 张力(地质) 机械转化 膜曲率 曲率 细胞膜弹性 变形(气象学) 材料科学 机械敏感通道 压缩(物理) 脂质双层相行为 生物化学 几何学 生物 复合材料 细胞生物学 受体 数学
作者
Xu-Zhong Yang,Chao Lin,Xudong Chen,Shouqin Li,Xueming Li,Bailong Xiao
出处
期刊:Nature [Nature Portfolio]
卷期号:604 (7905): 377-383 被引量:183
标识
DOI:10.1038/s41586-022-04574-8
摘要

PIEZO channels respond to piconewton-scale forces to mediate critical physiological and pathophysiological processes1-5. Detergent-solubilized PIEZO channels form bowl-shaped trimers comprising a central ion-conducting pore with an extracellular cap and three curved and non-planar blades with intracellular beams6-10, which may undergo force-induced deformation within lipid membranes11. However, the structures and mechanisms underlying the gating dynamics of PIEZO channels in lipid membranes remain unresolved. Here we determine the curved and flattened structures of PIEZO1 reconstituted in liposome vesicles, directly visualizing the substantial deformability of the PIEZO1-lipid bilayer system and an in-plane areal expansion of approximately 300 nm2 in the flattened structure. The curved structure of PIEZO1 resembles the structure determined from detergent micelles, but has numerous bound phospholipids. By contrast, the flattened structure exhibits membrane tension-induced flattening of the blade, bending of the beam and detaching and rotating of the cap, which could collectively lead to gating of the ion-conducting pathway. On the basis of the measured in-plane membrane area expansion and stiffness constant of PIEZO1 (ref. 11), we calculate a half maximal activation tension of about 1.9 pN nm-1, matching experimentally measured values. Thus, our studies provide a fundamental understanding of how the notable deformability and structural rearrangement of PIEZO1 achieve exquisite mechanosensitivity and unique curvature-based gating in lipid membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助jianghe597采纳,获得10
1秒前
花生壳发布了新的文献求助10
2秒前
2秒前
云然发布了新的文献求助10
3秒前
风中大楚给风中大楚的求助进行了留言
3秒前
李玲玲发布了新的文献求助10
4秒前
在水一方应助周文凯采纳,获得10
4秒前
李永涛发布了新的文献求助10
4秒前
5秒前
Dean应助蟒玉朝天采纳,获得60
7秒前
AHA完成签到,获得积分10
7秒前
谭茹茵发布了新的文献求助30
8秒前
8秒前
浮游应助花生壳采纳,获得10
8秒前
9秒前
EMC完成签到 ,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
慕青应助云然采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
10秒前
共享精神应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得30
11秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得30
11秒前
浮游应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得30
11秒前
Owen应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
ee驳回了酷波er应助
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908652
求助须知:如何正确求助?哪些是违规求助? 4185172
关于积分的说明 12997027
捐赠科研通 3951974
什么是DOI,文献DOI怎么找? 2167233
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092321