Deep learning for the dynamic prediction of multivariate longitudinal and survival data

计算机科学 多元统计 协变量 机器学习 比例危险模型 纵向数据 事件(粒子物理) 纵向研究 人工智能 事件数据 参数统计 数据挖掘 统计 数学 物理 量子力学
作者
Jeffrey Lin,Sheng Luo
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (15): 2894-2907 被引量:15
标识
DOI:10.1002/sim.9392
摘要

Abstract The joint model for longitudinal and survival data improves time‐to‐event predictions by including longitudinal outcome variables in addition to baseline covariates. However, in practice, joint models may be limited by parametric assumptions in both the longitudinal and survival submodels. In addition, computational difficulties arise when considering multiple longitudinal outcomes due to the large number of random effects to be integrated out in the full likelihood. In this article, we discuss several recent machine learning methods for incorporating multivariate longitudinal data for time‐to‐event prediction. The presented methods use functional data analysis or convolutional neural networks to model the longitudinal data, both of which scale well to multiple longitudinal outcomes. In addition, we propose a novel architecture based on the transformer neural network, named TransformerJM, which jointly models longitudinal and time‐to‐event data. The prognostic abilities of each model are assessed and compared through both simulation and real data analysis on Alzheimer's disease datasets. Specifically, the models were evaluated based on their ability to dynamically update predictions as new longitudinal data becomes available. We showed that TransformerJM improves upon the predictive performance of existing methods across different scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得10
刚刚
刚刚
大个应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
Angelo完成签到 ,获得积分10
1秒前
xxxidgkris发布了新的文献求助30
1秒前
RC_Wang应助搬砖美少女采纳,获得10
1秒前
567完成签到,获得积分10
1秒前
1秒前
阳光人生完成签到,获得积分10
1秒前
2秒前
bkagyin应助一平采纳,获得10
2秒前
LLL完成签到,获得积分10
3秒前
liuliumei完成签到,获得积分10
3秒前
华仔应助呼啦呼啦咔采纳,获得10
3秒前
wangg发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
英姑应助Zhong采纳,获得10
5秒前
5秒前
6秒前
Hu111发布了新的文献求助10
6秒前
开朗熊猫完成签到,获得积分10
7秒前
JAMA完成签到,获得积分10
8秒前
8秒前
小杨快看呀完成签到,获得积分10
9秒前
Orange应助wangg采纳,获得10
9秒前
MRCHONG完成签到,获得积分10
9秒前
哈哈哈哈发布了新的文献求助10
9秒前
poletar完成签到,获得积分10
9秒前
柠檬发布了新的文献求助10
9秒前
沉静的夜玉完成签到,获得积分10
9秒前
gaos发布了新的文献求助10
9秒前
MADKAI发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672