已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning for the dynamic prediction of multivariate longitudinal and survival data

计算机科学 多元统计 协变量 机器学习 比例危险模型 纵向数据 事件(粒子物理) 纵向研究 人工智能 事件数据 参数统计 数据挖掘 统计 数学 物理 量子力学
作者
Jeffrey Lin,Sheng Luo
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (15): 2894-2907 被引量:15
标识
DOI:10.1002/sim.9392
摘要

Abstract The joint model for longitudinal and survival data improves time‐to‐event predictions by including longitudinal outcome variables in addition to baseline covariates. However, in practice, joint models may be limited by parametric assumptions in both the longitudinal and survival submodels. In addition, computational difficulties arise when considering multiple longitudinal outcomes due to the large number of random effects to be integrated out in the full likelihood. In this article, we discuss several recent machine learning methods for incorporating multivariate longitudinal data for time‐to‐event prediction. The presented methods use functional data analysis or convolutional neural networks to model the longitudinal data, both of which scale well to multiple longitudinal outcomes. In addition, we propose a novel architecture based on the transformer neural network, named TransformerJM, which jointly models longitudinal and time‐to‐event data. The prognostic abilities of each model are assessed and compared through both simulation and real data analysis on Alzheimer's disease datasets. Specifically, the models were evaluated based on their ability to dynamically update predictions as new longitudinal data becomes available. We showed that TransformerJM improves upon the predictive performance of existing methods across different scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy发布了新的文献求助10
刚刚
节律之神发布了新的文献求助10
刚刚
crane发布了新的文献求助10
1秒前
廿五完成签到 ,获得积分10
1秒前
orixero应助科研通管家采纳,获得30
1秒前
桐桐应助科研通管家采纳,获得30
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
billGeorge应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
xx泡菜鱼完成签到,获得积分20
2秒前
桐桐应助卷卷采纳,获得10
2秒前
3秒前
吴吴吴完成签到,获得积分20
3秒前
thurman发布了新的文献求助30
4秒前
5秒前
上官若男应助孙淳采纳,获得10
5秒前
隐形曼青应助侯栋采纳,获得10
5秒前
ALIN完成签到,获得积分10
5秒前
爱右边发布了新的文献求助10
5秒前
zhao完成签到,获得积分10
7秒前
7秒前
小蘑菇应助xx泡菜鱼采纳,获得10
7秒前
FashionBoy应助小鬼不是采纳,获得10
8秒前
8秒前
11秒前
丘比特应助自觉的溪灵采纳,获得10
11秒前
qym发布了新的文献求助10
12秒前
whitesheep完成签到,获得积分10
12秒前
华老五完成签到,获得积分10
12秒前
13秒前
孙成成发布了新的文献求助10
14秒前
14秒前
孙淳发布了新的文献求助10
14秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584366
求助须知:如何正确求助?哪些是违规求助? 4667919
关于积分的说明 14770159
捐赠科研通 4610426
什么是DOI,文献DOI怎么找? 2529801
邀请新用户注册赠送积分活动 1498815
关于科研通互助平台的介绍 1467321