Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients

列线图 医学 无线电技术 肿瘤科 内科学 结直肠癌 肺癌 转移 接收机工作特性 放射科 癌症
作者
Renjie Wang,Weixing Dai,Jing Gong,Mingzhu Huang,Tingdan Hu,Hang Li,Kailin Lin,Cong Tan,Hong Hu,Tong Tong,Guoxiang Cai
出处
期刊:Journal of Hematology & Oncology [BioMed Central]
卷期号:15 (1) 被引量:152
标识
DOI:10.1186/s13045-022-01225-3
摘要

Abstract Limited previous studies focused on the death and progression risk stratification of colorectal cancer (CRC) lung metastasis patients. The aim of this study is to construct a nomogram model combing machine learning-pathomics, radiomics features, Immunoscore and clinical factors to predict the postoperative outcome of CRC patients with lung metastasis. In this study, a total of 103 CRC patients having metastases limited to lung and undergoing radical lung resection were identified. Patch-level convolutional neural network training in weakly supervised manner was used to perform whole slides histopathological images survival analysis. Synthetic minority oversampling technique and support vector machine classifier were used to identify radiomics features and build predictive signature. The Immunoscore for each patient was calculated from the density of CD3+ and CD8+ cells at the invasive margin and the center of metastatic tumor which were assessed on consecutive sections of automated digital pathology. Finally, pathomics and radiomics signatures were successfully developed to predict the overall survival (OS) and disease free survival (DFS) of patients. The predicted pathomics and radiomics scores are negatively correlated with Immunoscore and they are three independent prognostic factors for OS and DFS prediction. The combined nomogram showed outstanding performance in predicting OS (AUC = 0.860) and DFS (AUC = 0.875). The calibration curve and decision curve analysis demonstrated the considerable clinical usefulness of the combined nomogram. Taken together, the developed nomogram model consisting of machine learning-pathomics signature, radiomics signature, Immunoscore and clinical features could be reliable in predicting postoperative OS and DFS of colorectal lung metastasis patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iidae完成签到,获得积分10
刚刚
趣多多发布了新的文献求助10
刚刚
3秒前
scanker1981发布了新的文献求助30
3秒前
穆空完成签到,获得积分10
3秒前
3秒前
5秒前
mojibunny完成签到,获得积分10
6秒前
清新的寄风完成签到 ,获得积分10
7秒前
虚幻青发布了新的文献求助10
9秒前
9秒前
ppp发布了新的文献求助10
10秒前
ddd完成签到,获得积分20
11秒前
12秒前
科研通AI5应助笑颜采纳,获得10
12秒前
桂花大侠完成签到 ,获得积分10
13秒前
slj完成签到,获得积分10
14秒前
14秒前
爆爆完成签到,获得积分10
15秒前
张庭豪完成签到,获得积分10
15秒前
光亮乘云完成签到,获得积分10
15秒前
rodrisk发布了新的文献求助10
15秒前
潘潘发布了新的文献求助10
15秒前
15秒前
球球尧伞耳完成签到,获得积分10
16秒前
花凉完成签到,获得积分10
17秒前
花凉发布了新的文献求助10
19秒前
虚幻青完成签到,获得积分10
19秒前
内向的青荷完成签到,获得积分10
20秒前
研友_8RlQ2n完成签到,获得积分10
20秒前
yy2023发布了新的文献求助10
21秒前
zhongzhong发布了新的文献求助10
22秒前
NexusExplorer应助最棒哒采纳,获得10
22秒前
彭于晏应助陈林采纳,获得10
23秒前
元谷雪发布了新的文献求助10
25秒前
黑米粥发布了新的文献求助10
25秒前
xinxin完成签到,获得积分10
26秒前
CuiHe完成签到,获得积分20
27秒前
Andy_Cheung应助潘潘采纳,获得10
30秒前
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759186
求助须知:如何正确求助?哪些是违规求助? 3302242
关于积分的说明 10121566
捐赠科研通 3016654
什么是DOI,文献DOI怎么找? 1656547
邀请新用户注册赠送积分活动 790536
科研通“疑难数据库(出版商)”最低求助积分说明 753886