Towards a general correlation for minimum fluidization velocity in gas-fluidized beds: Based on a database mining from the literature

流态化 阻力 流化床 机械 CFD-DEM公司 物理 相关性 热力学 数学 计算流体力学 几何学
作者
Jibin Zhou,Mao Ye,Zhongmin Liu
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:251: 117455-117455 被引量:2
标识
DOI:10.1016/j.ces.2022.117455
摘要

As one of the most significant parameters in fluidized beds design and operation, the minimum fluidization velocity (Umf) has received utmost attention since 1940s. As an effective reference for evaluating the fluidization characteristic, Umf is conventionally predicted using the empirical correlation developed based on experiments for the specified gas-solid system. Despite more than 100 correlations proposed in the literature, these correlations show great diversity in either the applicable regimes or the mathematical formulae. Thus a general correlation for accurately determining Umf is highly desired. In this work, with a recently established database of Umf mined from published papers, the empirical correlations with four different formulae were first assessed for Geldart Groups A, B, and D particles, respectively. In view of the application limitations, modifications to different formulae of empirical correlations have been made to achieve satisfactory performances in predicting Umf for either Geldart Groups A, B, or D particles. Note that Umf is essentially determined by the balance between the gravitational force and drag force for a gas-solid system, a new formula based on a fluidized bed drag correlation derived from direct numerical simulations (DNS) was proposed. By using this formula, we developed a general correlation for Umf in gas-fluidized beds, which exhibits the best performance for all Geldart Groups A, B, and D particles when compared with empirical correlations reported in the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖林发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
笑点低井关注了科研通微信公众号
1秒前
1秒前
teryc完成签到,获得积分10
2秒前
2秒前
共享精神应助呢喃采纳,获得10
2秒前
2秒前
搜集达人应助水解小博采纳,获得10
2秒前
3秒前
Bulubulu发布了新的文献求助10
3秒前
sobremasa发布了新的文献求助10
3秒前
臭清关注了科研通微信公众号
4秒前
欣慰秋蝶完成签到,获得积分10
4秒前
yt069014241关注了科研通微信公众号
4秒前
开放爆米花完成签到,获得积分20
4秒前
万能图书馆应助二十二采纳,获得10
4秒前
Jasper应助2024采纳,获得30
4秒前
4秒前
4秒前
妖柒柒完成签到,获得积分10
4秒前
Naomi发布了新的文献求助10
5秒前
乐观小蕊发布了新的文献求助10
5秒前
tododoto完成签到,获得积分10
5秒前
小鳄鱼发布了新的文献求助10
6秒前
02022发布了新的文献求助10
6秒前
科研通AI6.1应助David采纳,获得10
6秒前
薇薇发布了新的文献求助10
7秒前
7秒前
蓝天发布了新的文献求助10
7秒前
美好稚晴发布了新的文献求助10
7秒前
肖林完成签到,获得积分10
8秒前
吉安娜发布了新的文献求助10
8秒前
8秒前
典雅的觅儿完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
科研通AI6.1应助柏风华采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759795
求助须知:如何正确求助?哪些是违规求助? 5522143
关于积分的说明 15395458
捐赠科研通 4896764
什么是DOI,文献DOI怎么找? 2633888
邀请新用户注册赠送积分活动 1581947
关于科研通互助平台的介绍 1537419