吸引子
混乱的
双稳态
非线性系统
统计物理学
物理
吸引力
动力学(音乐)
复杂动力学
非线性动力系统
控制理论(社会学)
联轴节(管道)
简单(哲学)
混沌控制
动力系统理论
经典力学
混沌同步
计算机科学
数学
数学分析
量子力学
人工智能
工程类
机械工程
语言学
哲学
声学
控制(管理)
认识论
作者
Thierry Tanze Wontchui,Michael Ekonde Sone,Sangeeta Rani Ujjwal,Joseph Yves Effa,H. P. Ekobena Fouda,Ramakrishna Ramaswamy
出处
期刊:Chaos
[American Institute of Physics]
日期:2022-01-01
卷期号:32 (1)
被引量:1
摘要
Understanding the asymptotic behavior of a dynamical system when system parameters are varied remains a key challenge in nonlinear dynamics. We explore the dynamics of a multistable dynamical system (the response) coupled unidirectionally to a chaotic drive. In the absence of coupling, the dynamics of the response system consists of simple attractors, namely, fixed points and periodic orbits, and there could be chaotic motion depending on system parameters. Importantly, the boundaries of the basins of attraction for these attractors are all smooth. When the drive is coupled to the response, the entire dynamics becomes chaotic: distinct multistable chaos and bistable chaos are observed. In both cases, we observe a mixture of synchronous and desynchronous states and a mixture of synchronous states only. The response system displays a much richer, complex dynamics. We describe and analyze the corresponding basins of attraction using the required criteria. Riddled and intermingled structures are revealed.
科研通智能强力驱动
Strongly Powered by AbleSci AI