Joint Optimization of Received Signal Power and Signal Space Dimensions for MIMO Broadcast Channels

多输入多输出 衰退 计算机科学 发射机 干扰(通信) 频道(广播) 信噪比(成像) 收发机 信号(编程语言) 电子工程 噪音(视频) 最优化问题 算法 无线 电信 工程类 人工智能 图像(数学) 程序设计语言
作者
Yifei Zhang,Haixia Zhang,Dongfeng Yuan,Xiaotian Zhou
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (4): 3868-3882
标识
DOI:10.1109/tvt.2022.3143654
摘要

In Multiple-input multiple-output (MIMO) broadcast channels (BCs), the transmitter simultaneously broadcasts signals to multiple receivers at same frequency band, resulting in that the communication capacity is affected by both interference, channel fading and random noise. Although channel fading can be mitigated by transceivers, the signal-to-noise-ratio (SNR) of the practical communication system is still dynamically changing due to the randomly changing noise. Traditional MIMO transceiver optimization algorithms can not flexibly adapt to the dynamic changes of SNR, resulting in large performance degradation. In this paper, we comprehensively consider signal power and signal space dimensions of the received signal in MIMO BCs, and propose two transceiver optimization algorithms which can dynamically adapt to the variance of SNRs. In the proposed algorithms, SNR is adopted to be an adjustment factor to cope with its variance. When SNR is low, i.e, large noise, the algorithm parameters are automatically adjusted so that the signal power is preserved as much as possible to combat the loss of communication capacity caused by large random noise. Correspondingly, under the condition of high SNR environment, the algorithm parameters are adjusted automatically to effectively compress the inter-user-interference (IUI) and intra-user-inter-stream-interference (ISI) by optimizing signal space dimensions. Simulation results show that in different SNR environments, the proposed algorithms can automatically adjust the focus of optimization, so that the optimization of signal power and signal space dimensions can automatically adapt to different SNRs. Compared with traditional transceiver optimization algorithms, the proposed algorithms can improve the communication capacity within a large dynamic range of SNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JayWu完成签到,获得积分10
1秒前
Wang发布了新的文献求助10
1秒前
1秒前
宵夜发布了新的文献求助10
1秒前
小树苗完成签到,获得积分10
1秒前
黙宇循光完成签到 ,获得积分10
2秒前
SciGPT应助高高诗柳采纳,获得10
2秒前
2秒前
2秒前
3秒前
包容的琦完成签到,获得积分10
3秒前
4秒前
splemeth完成签到,获得积分10
4秒前
WYJ发布了新的文献求助10
4秒前
4秒前
扎心应助樱花草采纳,获得10
4秒前
4秒前
华仔应助强健的电源采纳,获得10
5秒前
CAST1347完成签到,获得积分10
5秒前
酷酷妙梦发布了新的文献求助10
5秒前
5秒前
moon发布了新的文献求助20
6秒前
乔呀完成签到,获得积分10
6秒前
7秒前
21完成签到,获得积分10
7秒前
包容的琦发布了新的文献求助10
7秒前
无辜的冬寒完成签到,获得积分10
7秒前
8秒前
H-China发布了新的文献求助10
8秒前
8秒前
科研小哥发布了新的文献求助10
8秒前
田様应助djm采纳,获得20
9秒前
千年主治完成签到 ,获得积分10
9秒前
9秒前
KevinSun完成签到,获得积分10
10秒前
晓天完成签到,获得积分10
10秒前
Suagy发布了新的文献求助10
10秒前
10秒前
ruby完成签到,获得积分10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384