已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection and segmentation of loess landslides via satellite images: a two-phase framework

山崩 地质学 图像分割 分割 人工智能 遥感 计算机视觉 计算机科学 地貌学
作者
Huajin Li,Yusen He,Qiang Xu,Jiahao Deng,Weile Li,Yong Wei
出处
期刊:Landslides [Springer Science+Business Media]
卷期号:19 (3): 673-686 被引量:126
标识
DOI:10.1007/s10346-021-01789-0
摘要

Landslides are catastrophic natural hazards that often lead to loss of life, property damage, and economic disruption. Image-based landslide investigations are crucial for determining landslide susceptibility and risk. In practice, satellite images have been widely utilized for such investigations; however, they still require significant labor and time resources. In this study, we propose an image-based two-phase data-driven framework for detecting and segmenting landslide regions using satellite images. In phase I, an object detection algorithm, Faster-RCNN, is trained to detect the landslide location within the large-scale satellite images. The bounding boxes of each landslide location are proposed and visualized. In phase II, we crop the satellite images into small images using the location information of the bounding boxes. Next, we use a boundary detection algorithm to identify the boundary information of each detected loess landslide to strengthen the segmentation performance. Finally, we improve the architecture of the segmentation U-Net by integrating additional inception blocks with dilation to enhance the landslide segmentation performance. A total of 150 local loess landslide occurrences in northern China are selected as our case study to validate the effectiveness, efficiency, and universality of the proposed two-phase framework. Segmentation of loess landslides is considered a challenging task due to the intrinsic nature of vague boundary information. The proposed framework is compared with the conventional U-Net and other recent benchmarking landslide segmentation algorithms. Computational results indicate that the proposed framework produces more accurate segmentation of loess landslides compared with the other tested benchmarking algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
饭ff完成签到,获得积分10
2秒前
轻松的如冰完成签到,获得积分10
2秒前
terryok发布了新的文献求助30
2秒前
Steven发布了新的文献求助10
4秒前
小马甲应助大喵采纳,获得10
5秒前
5秒前
丰富钢铁侠完成签到,获得积分20
5秒前
loong发布了新的文献求助10
7秒前
7秒前
zho发布了新的文献求助10
7秒前
打打应助高大的蜡烛采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
AA发布了新的文献求助30
11秒前
小九九发布了新的文献求助10
12秒前
香蕉不言发布了新的文献求助10
12秒前
13秒前
然大宝发布了新的文献求助10
17秒前
17秒前
上官若男应助loong采纳,获得10
18秒前
阿氏之光完成签到,获得积分10
18秒前
21秒前
21秒前
23秒前
AA完成签到,获得积分10
24秒前
鹿茸与共发布了新的文献求助10
24秒前
陈曦发布了新的文献求助10
28秒前
Cherry发布了新的文献求助10
28秒前
28秒前
生动元蝶完成签到,获得积分10
31秒前
Steven发布了新的文献求助10
33秒前
34秒前
36秒前
37秒前
zhongu发布了新的文献求助10
38秒前
鱼生发布了新的文献求助30
40秒前
大喵发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190