Detection and segmentation of loess landslides via satellite images: a two-phase framework

山崩 地质学 图像分割 分割 人工智能 遥感 计算机视觉 计算机科学 地貌学
作者
Huajin Li,Yusen He,Qiang Xu,Jiahao Deng,Weile Li,Yong Wei
出处
期刊:Landslides [Springer Nature]
卷期号:19 (3): 673-686 被引量:70
标识
DOI:10.1007/s10346-021-01789-0
摘要

Landslides are catastrophic natural hazards that often lead to loss of life, property damage, and economic disruption. Image-based landslide investigations are crucial for determining landslide susceptibility and risk. In practice, satellite images have been widely utilized for such investigations; however, they still require significant labor and time resources. In this study, we propose an image-based two-phase data-driven framework for detecting and segmenting landslide regions using satellite images. In phase I, an object detection algorithm, Faster-RCNN, is trained to detect the landslide location within the large-scale satellite images. The bounding boxes of each landslide location are proposed and visualized. In phase II, we crop the satellite images into small images using the location information of the bounding boxes. Next, we use a boundary detection algorithm to identify the boundary information of each detected loess landslide to strengthen the segmentation performance. Finally, we improve the architecture of the segmentation U-Net by integrating additional inception blocks with dilation to enhance the landslide segmentation performance. A total of 150 local loess landslide occurrences in northern China are selected as our case study to validate the effectiveness, efficiency, and universality of the proposed two-phase framework. Segmentation of loess landslides is considered a challenging task due to the intrinsic nature of vague boundary information. The proposed framework is compared with the conventional U-Net and other recent benchmarking landslide segmentation algorithms. Computational results indicate that the proposed framework produces more accurate segmentation of loess landslides compared with the other tested benchmarking algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
gujianhua完成签到,获得积分10
3秒前
小碗完成签到 ,获得积分10
4秒前
傻傻的语海完成签到,获得积分10
4秒前
123完成签到,获得积分10
5秒前
有圆圆完成签到,获得积分10
6秒前
9秒前
gujianhua发布了新的文献求助10
10秒前
阿潇完成签到 ,获得积分10
13秒前
YC2完成签到,获得积分10
15秒前
CC完成签到 ,获得积分10
15秒前
16秒前
19秒前
weijian完成签到,获得积分10
19秒前
Darren发布了新的文献求助10
21秒前
22秒前
蓝胖子应助cqr采纳,获得30
24秒前
27秒前
冷艳的寻冬完成签到 ,获得积分10
31秒前
小芭乐完成签到 ,获得积分10
32秒前
你好啊发布了新的文献求助10
33秒前
Blummer完成签到,获得积分10
33秒前
36秒前
37秒前
琉璃苣应助Hu1Guang采纳,获得10
39秒前
41秒前
42秒前
42秒前
小蘑菇应助你好啊采纳,获得10
46秒前
完美世界应助坚强的严青采纳,获得10
46秒前
风的季节发布了新的文献求助10
46秒前
以甲引丁完成签到,获得积分20
50秒前
Captain完成签到 ,获得积分10
51秒前
刘秀完成签到 ,获得积分10
54秒前
55秒前
yanna完成签到,获得积分10
55秒前
duoduo完成签到,获得积分10
59秒前
oak发布了新的文献求助10
59秒前
zhenyan发布了新的文献求助10
1分钟前
科研小白完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137627
求助须知:如何正确求助?哪些是违规求助? 2788531
关于积分的说明 7787471
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300119
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023