亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Distribution Bias Aware Collaborative Generative Adversarial Network for Imbalanced Deep Learning in Industrial IoT

鉴别器 计算机科学 人工智能 机器学习 分类器(UML) 深度学习 大数据 生成语法 对抗制 数据建模 生成对抗网络 数据挖掘 电信 数据库 探测器
作者
Xiaokang Zhou,Yiyong Hu,Jiayi Wu,Wei Liang,Jianhua Ma,Qun Jin
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 570-580 被引量:118
标识
DOI:10.1109/tii.2022.3170149
摘要

The impact of Internet of Things (IoT) has become increasingly significant in smart manufacturing, while deep generative model (DGM) is viewed as a promising learning technique to work with large amount of continuously generated industrial Big Data in facilitating modern industrial applications. However, it is still challenging to handle the imbalanced data when using conventional Generative Adversarial Network (GAN) based learning strategies. In this article, we propose a distribution bias aware collaborative GAN (DB-CGAN) model for imbalanced deep learning in industrial IoT, especially to solve limitations caused by distribution bias issue between the generated data and original data, via a more robust data augmentation. An integrated data augmentation framework is constructed by introducing a complementary classifier into the basic GAN model. Specifically, a conditional generator with random labels is designed and trained adversarially with the classifier to effectively enhance augmentation of the number of data samples in minority classes, while a weight sharing scheme is newly designed between two separated feature extractors, enabling the collaborative adversarial training among generator, discriminator, and classifier. An augmentation algorithm is then developed for intelligent anomaly detection in imbalanced learning, which can significantly improve the classification accuracy based on the correction of distribution bias using the rebalanced data. Compared with five baseline methods, experiment evaluations based on two real-world imbalanced datasets demonstrate the outstanding performance of our proposed model in tackling the distribution bias issue for multiclass classification in imbalanced learning for industrial IoT applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
powell完成签到,获得积分10
3秒前
CATH完成签到 ,获得积分10
4秒前
mm完成签到 ,获得积分10
7秒前
Mottri完成签到 ,获得积分10
8秒前
杳鸢应助云枝采纳,获得10
9秒前
17秒前
等待的剑身完成签到,获得积分10
19秒前
19秒前
云枝应助文件撤销了驳回
24秒前
如果多年后完成签到 ,获得积分10
34秒前
酷酷的爆米花应助dilmurat10采纳,获得10
36秒前
8R60d8应助王韵迪采纳,获得10
42秒前
44秒前
47秒前
陈海明发布了新的文献求助10
49秒前
矮小的盼夏完成签到 ,获得积分10
49秒前
WerWu完成签到,获得积分10
55秒前
57秒前
陈海明完成签到,获得积分20
58秒前
58秒前
璨澄完成签到 ,获得积分10
1分钟前
teaser完成签到 ,获得积分10
1分钟前
贪玩菲音完成签到,获得积分10
1分钟前
wook完成签到,获得积分10
1分钟前
1分钟前
小姚姚完成签到 ,获得积分10
1分钟前
1分钟前
犹豫若之发布了新的文献求助10
1分钟前
liuminghui发布了新的文献求助10
1分钟前
疯狂喵完成签到 ,获得积分10
1分钟前
1分钟前
d.zhang完成签到,获得积分10
1分钟前
超级雪碧关注了科研通微信公众号
1分钟前
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
火山大王发布了新的文献求助10
1分钟前
2分钟前
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229674
求助须知:如何正确求助?哪些是违规求助? 2877215
关于积分的说明 8198517
捐赠科研通 2544654
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774