A Challenge for Emphysema Quantification Using a Deep Learning Algorithm With Low-dose Chest Computed Tomography

医学 置信区间 组内相关 算法 计算机断层摄影术 核医学 放射科 人工智能 数学 内科学 计算机科学 临床心理学 心理测量学
作者
Hyewon Choi,Hyungjin Kim,Kwang Nam Jin,Yeon Joo Jeong,Kum Ju Chae,Kyung Hee Lee,Hwan Seok Yong,Bo Mi Gil,Hye‐Jeong Lee,Ki Yeol Lee,Kyung Nyeo Jeon,Jaeyoun Yi,Sola Seo,Chulkyun Ahn,Joonhyung Lee,Kyuhyup Oh,Jin Mo Goo
出处
期刊:Journal of Thoracic Imaging [Lippincott Williams & Wilkins]
卷期号:37 (4): 253-261 被引量:8
标识
DOI:10.1097/rti.0000000000000647
摘要

We aimed to identify clinically relevant deep learning algorithms for emphysema quantification using low-dose chest computed tomography (LDCT) through an invitation-based competition.The Korean Society of Imaging Informatics in Medicine (KSIIM) organized a challenge for emphysema quantification between November 24, 2020 and January 26, 2021. Seven invited research teams participated in this challenge. In total, 558 pairs of computed tomography (CT) scans (468 pairs for the training set, and 90 pairs for the test set) from 9 hospitals were collected retrospectively or prospectively. CT acquisition followed the hospitals' protocols to reflect the real-world clinical setting. Using the training set, each team developed an algorithm that generated converted LDCT by changing the pixel values of LDCT to simulate those of standard-dose CT (SDCT). The agreement between SDCT and LDCT was evaluated using the intraclass correlation coefficient (ICC; 2-way random effects, absolute agreement, and single rater) for the percentage of low-attenuated area below -950 HU (LAA-950 HU), κ value for emphysema categorization (LAA-950 HU, <5%, 5% to 10%, and ≥10%) and cosine similarity of LAA-950 HU.The mean LAA-950 HU of the test set was 14.2%±10.5% for SDCT, 25.4%±10.2% for unconverted LDCT, and 12.9%±10.4%, 11.7%±10.8%, and 12.4%±10.5% for converted LDCT (top 3 teams). The agreement between the SDCT and converted LDCT of the first-place team was 0.94 (95% confidence interval: 0.90, 0.97) for ICC, 0.71 (95% confidence interval: 0.58, 0.84) for categorical agreement, and 0.97 (interquartile range: 0.94 to 0.99) for cosine similarity.Emphysema quantification with LDCT was feasible through deep learning-based CT conversion strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助高贵傲易采纳,获得10
1秒前
张磊完成签到,获得积分10
3秒前
5秒前
万能图书馆应助猪肉水饺采纳,获得10
5秒前
xiuwen发布了新的文献求助10
5秒前
思源应助bommi采纳,获得10
5秒前
千俞完成签到 ,获得积分10
6秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
长雁应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
小蘑菇应助lixiunan采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
wang应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
长雁应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得50
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
中锅人发布了新的文献求助10
9秒前
13秒前
司空以彤完成签到,获得积分10
13秒前
14秒前
kyttytk发布了新的文献求助10
14秒前
cai完成签到 ,获得积分10
15秒前
15秒前
SYLH应助hhan采纳,获得10
15秒前
16秒前
CATH完成签到 ,获得积分10
18秒前
高贵傲易发布了新的文献求助10
18秒前
蔺映秋发布了新的文献求助10
19秒前
LeichterL发布了新的文献求助10
20秒前
衫青发布了新的文献求助10
21秒前
慕青应助默默成风采纳,获得10
21秒前
lixiunan发布了新的文献求助10
22秒前
打打应助子虞采纳,获得10
25秒前
yy完成签到,获得积分20
25秒前
昏睡的傻姑完成签到,获得积分10
28秒前
zijinbeier完成签到,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734585
求助须知:如何正确求助?哪些是违规求助? 3278533
关于积分的说明 10009882
捐赠科研通 2995161
什么是DOI,文献DOI怎么找? 1643223
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196